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Abstract

This work deals with simulation of brass and reed woodwind instruments. The principal

objective is to develop discrete-time models that are suitable for application in a musical

sound synthesis environment.

The main bulk of the thesis describes methods for linear modelling of the instrument

air column. Using a travelling-wave based approach, the air column is modelled as a series

of modules, each representing a part of the bore. New methods for digital modelling of

brass and woodwind mouthpieces, woodwind toneholes, and brass bells are presented. The

study also includes new methods for discrete-time modelling of conical bore sections.

In addition, the mechanical behaviour of a clarinet reed is studied by means of a dis-

tributed model that is formulated numerically using the �nite-di�erence approach. Precise

measurements of the reed shape and the mouthpiece lay geometry have been carried out

in order to accurately simulate the bending of the reed against the lay during oscillation.

An equivalent lumped oscillator model is formulated, and its properties are analysed in

application to a reed-driven pipe simulation.

In general, the discrete-time models described in this work are validated via comparison

with either measurements or established acoustic theories. The modular approach taken

in the derivation of these models allow for dynamic and intuitive control of the musically

important simulation parameters.
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Chapter 1

Introduction

This work describes methods for time-domain simulation of acoustic wind instruments.

The objective is to develop models that can be used for sound synthesis of brass and reed

woodwind instruments.

1.1 General Introduction to Discrete-Time Modelling of

Musical Instruments

Discrete-time modelling is a relatively new approach to studying musical instruments.

Until a few decades ago, most studies in the �eld of musical acoustics were based around

purely analytical calculations, usually carried out in the frequency-domain. A more re-

cent trend is to study the oscillations taking place inside and outside the instrument by

means of time-domain simulation. The main reason for taking this approach is that the

sound production in most musical instruments involves complex non-linear phenomena,

and this generally tends to make it extremely diÆcult to give an accurate description of

the oscillatory behaviour by analytical means.

Although some attempts at time-domain simulation of musical instruments have been

made by means of analogue computer systems (see for example, [29]), the predominant

hardware tool that is used for implementation of such physical models is the digital com-

puter. An important consequence of the use of a digital system is that models have to

be formulated in numerical form, which requires the combination of acoustical modelling

methods with signal processing and numerical modelling techniques. The main drawback

of the time-domain modelling approach is that precise simulations typically require large

amounts of computational power. A common approach is therefore to use an eÆcient

model that simpli�es the acoustic behaviour of the instrument but still captures its main

operational features. Because computing power has been rapidly increasing for the past

few decades and will continue to do so in the immediate future, it may be expected that

1
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Acoustic Theories and Measurements

Acoustic Model

Discrete-Time Model

signal processing/numerical techniques

simplifications/assumptions

Figure 1.1: General procedure for derivation of a discrete-time model of an acoustic system.

the computational burden will form less of an obstacle in future applications. However,

as will be explained later in this section, computational eÆciency is likely to remain an

important modelling criterion, especially in music-oriented applications.

To derive a discrete-time model of an acoustic system, one usually proceeds in two steps

(see �gure 1.1). The �rst step consists of formulating a set of mathematical formulae that

together describe the acoustic behaviour of the system. This acoustic model is then put

into numerical form in the second step, which is commonly referred to as discretisation.

Although the present study is mainly motivated by the desire for high quality sound

synthesis, the objective for developing discrete-time models is generally twofold. Initially,

the objective was largely con�ned to gaining insight into the sound production mecha-

nisms of musical instruments. The area of expertise that is most likely to bene�t from this

research is that of the design and production of real acoustic instruments. Applications

might for example take the form of providing useful advice to instrument manufacturers

about the improvement and repair of traditional instruments. More recently, a second

objective has emerged in the form of musical sound synthesis. For example, physical mod-

elling techniques have already been implemented in various commercial synthesizers, and

it is widely expected that this development will eventually lead to realistic reproduction

of the sounds of real instruments. There is no reason to con�ne the area of application

to pure imitation e�orts though: the modelling framework that is used for simulation of

real instruments can also be employed for the creation of new, \virtual acoustic" instru-

ments. Developments in this direction form a particularly promising prospect for use in

compositions and performances of electronic and electro-acoustic music.

The reason that physical modelling has become a popular sound synthesis method
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is that it o�ers distinct advantages over previously developed techniques such as additive

synthesis, frequency modulation and sampling. Because these methods are typically aimed

at reproduction of waveforms, they usually fail to capture the transient features of the

acoustically produced sound. By simulating the behaviour of the acoustical system, the

physical properties of the acoustical system are embedded within the model, and as a

result the transient characteristics are naturally reproduced with it. This is of primary

importance because the transient features of acoustic signals such as speech and music

appear to be of fundamental importance from the point of view of perception. The method

also allows, to some extent, the restoration of the traditional relation between player

and instrument. That is, a physical model can be controlled through parameters that

correspond to the \real-life" parameters of a musician. For example, a violin model can

be formulated such that the excitation of the strings is controlled though variation of

bowing pressure and velocity. The intuitive nature of such control has been a natural part

of musical skills for centuries, but has to some extent been lost with the introduction of

electronic instruments. The lack of intuitive control has certainly been one of the major

drawbacks of many previous sound synthesis methods [68].

In the literature, one can often make a distinction between studies that are mainly

aimed at either the �rst objective (understanding) or the second objective (sound synthe-

sis). However, in practice these are not completely independent objectives. That is, in

order to formulate a realistic sound synthesis model, one needs to �rst gain a very good

understanding of the acoustic system. On the other hand, the ultimate test for assessing

the quality of an acoustic model is perhaps by judging its sound output. Given this co-

herence between the two objectives, the main di�erence that remains is that there tends

to be a much sharper trade-o� between eÆciency and accuracy in the derivation of phys-

ical models with sound synthesis purposes. This is mainly because the musical potential

of sound synthesis applications is most e�ectively explored in a real-time environment.

This requires a very high modelling eÆciency, especially if the processing power has to be

shared with a controller interface.

1.2 Wind Instrument Modelling

The �rst wind instrument time-domain simulation to appear in the literature is the clarinet

model by Schumacher [124]. In this model, the response of the instrument air column is

computed by means of a convolution with its impulse response. The convolution is part

of a non-linear feedback loop that forms the basic structure of the model, where the non-

linear part corresponds to the reed excitation mechanism. This type of formulation was

later generalised for simulation of a wide variety of self-sustaining musical oscillators by

McIntyre, Schumacher and Woodhouse [95], and has since been adopted and developed
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further by a large number of researchers. Although remarkably realistic sound output can

be obtained within this approach, the convolution method is not particularly suitable for

application to musical sound synthesis due to the fact that a di�erent impulse response is

required for each con�guration of the instrument bore. For example, in order to simulate

the functioning of the valves of a trumpet, the model would have to switch or interpolate

between a large set of impulse responses. In order to enable precise control of those parts

of the instrument that are used for pitch adjustment (i.e., toneholes, valves or slides)

without having to resort to methods which require large amounts of computational power

and storage space, a modular approach is required. That is, if the instrument is modelled

as a series of interacting modules, these modules can be controlled independently, which

tends to allow for a much more direct, simpler and meaningful form of parameterisation.

For example, a modular clarinet model could consist of a series of cylindrical bore sections

and tonehole units, and in a way analogous to a real clarinet player, the pitch of the

instrument could then be adjusted by opening and closing of the holes.

Various modular approaches to modelling wind instrument bores can be found in the

literature. The �rst attempts in this direction were made by Smith [129] in the form

of a digital waveguide model of the clarinet. Although this model is based on strong

simpli�cations concerning the reed excitation mechanism and the acoustical function of the

toneholes, it must be considered as an essential step forward, since it establishes the basic

principles of modelling the air column vibrations by explicitly simulating the transmission

and re
ection of waves inside the bore. The ideas behind the digital waveguide modelling

approach were initially developed in application to string instruments, and were partly

inspired by earlier work on sound synthesis of strings by Karplus and Strong [71] and

Ja�e and Smith [69]. The digital waveguide approach was later developed further in a

number of di�erent studies, for example for simulation of woodwinds [38, 63, 148, 119]

and brass instruments [27], and have been widely adopted (for example, in [4, 45, 99]).

At around the same time as Smith initiated the digital waveguide approach, Mart��nez

et al. [94] developed a method that is extremely similar to digital waveguide modelling.

That is, their multi convolution algorithm is based on the same principle of simulation by

explicitly modelling the propagating waves in the bore. Another approach for modular

simulation was developed by Adrien in form of modal synthesis [3]. This method is based

on a representation of a vibrating structure as a set of normal modes, where each mode has

its own frequency, damping coeÆcient and modal shape coordinate. The modal synthesis

method tends to be rather ineÆcient when applied to modelling woodwind instrument

bores, because a set of modes has to be de�ned for each individual tonehole and bore

section.

Given these basic methods for linear modelling of the instrument bore, it is worthwhile

pointing out a number of recent developments and possible improvements. In a study
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on trombone simulation, Msallam et al. [100] have presented methods for including the

non-linear e�ects that typically occur at high amplitude oscillations in the bore. These

non-linear features form an essential part of the sound of most brass instruments, and

a much improved sound quality can be obtained by including them in the simulation.

Vergez [160], starting from earlier work on this subject by Msallam [99], has presented an

improved algorithm for discrete-time modelling of non-linear e�ects, and incorporated this

algorithm in a trumpet simulation. In terms of modelling the lip excitation mechanism,

various models can be found in the literature, usually in the form of one-mass or two-

mass models [45, 141, 49, 142, 1, 2, 44, 99, 100, 160, 161]. It is often assumed that for

the purpose of sound synthesis, a one-mass model is suÆcient [58]. It appears that the

one-mass models presented by Msallam et al. [100] and by Rodet and Vergez [161] are

particularly suitable for sound synthesis, as they have taken care to avoid the generation

of arti�cial high-frequency components during the lip closure.

With respect to modelling of reed woodwinds, Hirschberg et al. [64] have pointed

out several aero-acoustic features that can be incorporated in a basic acoustic model in

order to obtain a more realistic sound output. However, while diverse improvements in

this direction have been made for 
ue instruments [159] as well as for brass instruments

[99, 160], physical models of reed woodwinds in which such phenomena are carefully taken

into account have yet to appear in the literature.

Another issue that has not yet been addressed properly is the mechanical behaviour

of the reed. In most discrete-time models that have been developed so far, the reed is

represented as a lumped oscillator (see for example, [124, 77, 115, 54, 43]). These mod-

els are based on the assumption that the reed has one (constant) mechanical degree of

freedom. Unfortunately, this assumption only holds for oscillations at very small ampli-

tudes. Moreover, reed beating is usually included in a highly simpli�ed manner, which

results in the arti�cial generation of higher harmonics. As pointed out in [140] and [137],

the reed/mouthpiece interaction can be simulated in a more realistic way by means of a

distributed model. The large computional burden of such a model renders it unsuitable for

sound synthesis purposes though. Ducasse [48] and Gazengel [55] have formulated lumped

models in which the e�ects of the reed curling up to the mouthpiece lay is included by

formulating the lumped parameters as a function of the reed de
ection. However, both

these studies are very theoretical, and the derivation of the lumped parameters is not

based on careful measurements of the reed and the mouthpiece geometries.

There are also numerous improvements possible with respect to discrete-modelling of

the instrument air column. One aspect that appears to be well covered at this stage is the

possibility of adjusting the length of an acoustical bore. V�alim�aki and colleagues [152, 148]

have carried out an extensive study on this subject in the context of digital waveguide

modelling, and Barjau et al. [19] have recently removed the limitations concerning the
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bore lengths in the multi convolution algorithm.

The �rst woodwind tonehole model that could be employed within the context of

digital waveguide modelling was presented by V�alim�aki et al. [151]. This rather simpli�ed

model, which can not be used for simulation of closed toneholes, was later greatly improved

by Scavone and Cook [121]. However, the applicability of their three-port tonehole model

is limited because (1) it requires a minimum tonehole length of at least half the spatial

sample interval [120] and (2) it has not been formulated for modelling toneholes in conical

bores.

Surprisingly little work has been done on discrete-time modelling of woodwind mouth-

pieces. The only available model appears to be the lumped two-port representation pro-

posed by Scavone [119]. This model requires four �lters of relatively high order (Scavone

employed 13th-order IIR �lters), and can therefore not be regarded as particularly eÆ-

cient. The \brute force" solution by means of lumped �lters was deemed necessary by

Scavone because a more straight-forward implementation of his model was assumed to be

unstable because it involved the implementation of an air column junction of decreasing

taper rate.

The problem of potential instability encountered by Scavone is in fact related to a wider

discussion about simulation of conical bore systems. It is interesting to note that there

seems to be no consensus about this in the literature. On the one hand, V�alim�aki [148]

claims that digital models are bound to be stable because they simulate passive physical

systems. This line of reasoning appears to be supported by the fact that Mart��nez et al.

[94], employing techniques that are very similar to those used by V�alim�aki , are able to

compute the impulse response of conical bore systems directly in discrete-time without

running into numerical problems. On the other hand, Scavone [119] has reported that

�nite-precision simulations of conical bore models are problematic because unstable growth

tends to occur if the model is computed over long time durations. This subject clearly

deserves some more investigation.

Berners [27] has used so-called \Sturm-Liouville (S-L)" modelling techniques for mod-

elling acoustic bores; with this approach, passively terminated bore systems can always

be simulated in a stable manner. The main disadvantage of the S-L model is that it

is less suited to eÆcient time-domain implementation of musical instrument bores, espe-

cially in cases where any of the 
ared sections of an instrument contain toneholes that are

controlled dynamically [28].

Further possible improvements are possible with respect to modelling brass air columns.

As in the case of woodwinds, discrete-time modelling of the brass mouthpiece appears to

be a rather poorly covered subject. Dietz [45] employs a trumpet mouthpiece model

that is based on a lumped element model described by Backus [18], whereas Msallam

[99] has employed a digital waveguide implementation of a simple model consisting of
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two cylindrical sections for modelling a trombone mouthpiece. However, neither of these

models has been properly assessed in terms of accuracy so far.

With respect to modelling the 
aring brass bell, Berners [27] has carried out extensive

research on how to determine analytically a brass bell re
ectance, although perhaps a

more systematic approach to this problem can be found in the studies on multi-modal

decomposition by Pagneux et al. [105] and Amir et al. [8]. It appears that the only two

methods for digital approximation of such a bell re
ectance available in the literature are

the waveguide �lter method employed by Dietz [45] and the convolution method used by

Msallam [99]. Unfortunately, both these methods are computationally rather expensive,

which leaves the development of a cheaper method still very much desirable.

1.3 Thesis Outline

The aims of this work are:

(1) to develop a woodwind tonehole model that can represent toneholes of a wide variety

of physically and musically feasible dimensions, and that is applicable to discrete-

time modelling of cylindrical bore as well as conical bore woodwind instruments.

Furthermore, this model should allow dynamic control of its state.

(2) to develop techniques for discrete-time modelling of brass and woodwind mouth-

pieces.

(3) to improve on the existing techniques for digital approximation of brass bell re-


ectances.

(4) to establish under which conditions a travelling-wave based digital simulation of a

conical bore system remains stable.

(5) to develop a single reed excitation model that incorporates the interaction between

the reed and the mouthpiece lay in a precise way.

In pursuing these aims, we consider it as important that the following criteria are taken

into account:

(A) In the derivation of discrete-time models, the central criterion is to obtain a good

trade-o� between eÆciency, accuracy and perceptual relevance.

(B) The methodology should result in stable models of brass and woodwind air columns.

(C) The modelling approach should always be modular for simulation of those parts

of the instrument that require dynamic control of one or more of their parameters
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(i.e. the length of the bore of a brass instrument, the states of the toneholes of a

woodwind instrument).

(D) The resulting discrete-time models should always be compared to their continuous-

time counterparts, and the causes of any discrepancies should be clari�ed.

(E) Where possible, model parameters should be derived from measurements on real

instruments.

Aero-acoustical aspects, such as those outlined in [64], are not included in the aims.

We take the view that the �rst step in developing musically useful physical models is

to formulate basic models in a modular way. With respect to modelling the excitation

mechanism, we consider the mechanical interaction between the reed and the mouthpiece

as the most urgent aspect to be investigated.

The thesis is organised as follows. Chapter 2 reviews the basic theories and principles

of modelling tubular acoustic systems such as pipes, cavities and horns. Acoustic bores of

varying cross-section are studied by means of piecewise modelling techniques, and results

are compared with those obtained using multi-modal decomposition methods.

Methods for modelling acoustic systems in discrete-time are discussed in chapter 3.

Two well-known modelling approaches, namely convolution methods and digital waveguide

modelling, are reviewed. In addition, we introduce the application of wave digital �lter

techniques, and give an outline of how to combine these with digital waveguide techniques.

The resulting modelling approach, which is referred to as wave digital modelling, forms

the basis for various techniques and applications described in subsequent chapters.

Chapter 4 discusses digital waveguide modelling of non-
aring bores in detail. New

ways of formulating taper junctions are described, and modelling errors related to the

inclusion of viscothermal losses are analysed. An important part of this chapter is the

investigation into the stability of conical bore simulations.

In chapter 5 we describe a new method for simulation of woodwind toneholes, us-

ing wave digital modelling techniques. The methodology is based on and veri�ed with

established tonehole theories.

Chapter 6 discusses techniques for simulation of the main bore of a woodwind instru-

ment. A di�erent method for modelling taper and diameter discontinuities, which enables

the derivation of realisable discrete-time formulations of conical bore systems containing

lumped elements, is presented. Example applications of the wave digital modelling ap-

proach are discussed, and a detailed comparison with the multi convolution approach is

given.

Chapter 7 deals with digital approximation of the bell of a brass instrument. Ap-

plication of conventional IIR �lter design methods to a typical brass bell re
ectance is
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investigated. A new method that makes use of one-pole TIIR �lter elements is intro-

duced. These are digital �lters of a type that have only been developed very recently

[162], and have properties that allow for an eÆcient approximation. We also present a

second method, that uses a FIR �lter instead of TIIR elements. Both methods are applied

to an experimentally determined trumpet bell re
ectance.

Chapter 8 discusses discrete-time modelling of the mouthpiece of a brass or reed wood-

wind instrument. Basic frequency-domain models are presented and veri�ed with mea-

surements on a trumpet and a clarinet. Discretisation of these models is accomplished

with the use of wave digital modelling techniques.

In chapter 9, the elements discussed in chapters 3 to 8 are combined in the simulations

of the complete air column of a trumpet and of a clarinet.

Finally, in chapter 10, we describe techniques for discrete-time modelling of the single

reed excitation mechanism. The emphasis in this chapter is mainly on modelling the

mechanical behaviour of the reed. A distributed model of the reed/mouthpiece system is

presented, in which the interaction of the reed with the mouthpiece lay is carefully taken

into account. Furthermore, it is shown that an equivalent lumped oscillator model can

be derived, and the properties of this model are analysed in a simulation of a reed-driven

pipe.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Linear Models of Tubular Acoustic

Systems

The air column of a wind instrument is a tubular system �lled with air, which is driven

into oscillation when the instrument is played. For oscillations at small amplitudes, such

as occur when playing a brass or reed woodwind instrument at low or medium dynamic

levels, we may assume linear vibrational behaviour. For oscillation at high amplitudes -

for example, when playing a brass instrument at forte levels - the assumption of linearity

no longer holds.

In this chapter, linear models of tubular acoustic systems are discussed. The chapter

provides a foundation for the discrete-time modelling techniques described in the subse-

quent chapters. Most of the material presented here forms a review of acoustics theory as

given in standard acoustic textbooks (for example, [139, 103, 84, 98, 52]). In addition, a

few novel modelling techniques and analysis methods are presented.

The chapter is organised as follows. Section 2.1 describes the basic 
uid dynamical

properties and principles of acoustical wave motion. Then in section 2.2, wave propaga-

tion in non-
aring bores (cylindrical and conical) is discussed. Finally in section 2.3, we

discuss how more complex bore shapes can be modelled by means of piecewise modelling

techniques.

2.1 Acoustic Wave Motion

Sound waves are pressure disturbances that propagate through air, resulting in increases

and decreases of local pressure. The pressure variations correspond to a continuous transfer

between potential and kinetic energy, which is possible because air has both mass and

elasticity. This section presents the basic laws and properties that govern acoustic wave

motion.

11



12 CHAPTER 2. LINEAR MODELS OF TUBULAR ACOUSTIC SYSTEMS

2.1.1 Basic Fluid Dynamical Properties

An essential characteristic of the 
uid air is that it is compressible. Analogous to storing

potential energy in a mechanical spring by displacing it from its equilibrium position,

potential energy can be stored in a volume of air by compressing or decompressing it.

Consider a volume of air, having a volume V0 and pressure P0 at equilibrium. With

small pressure 
uctuations, the elastic behaviour is approximately linear, and the relation

between changing pressure (P) and volume (V ) of a �xed mass of gas may be expressed

as [52]:

P � P0 = B

�
V0 � V
V

�
; (2.1)

where B is called the bulk modulus [52, 84]. The pressure variation or excess pressure

(P � P0) is usually referred to as the acoustic pressure (p). Apart from volume elasticity,

air has mass density (mass/volume). During compression or decompression of the volume,

its total massM stays unaltered, in other words the product of density (�) and volume is

constant:

� V = �0 V0 =M: (2.2)

Combining (2.2) and (2.1) yields the relationship between density and pressure:

� = �0

� p
B

+ 1
�
: (2.3)

For small pressure 
uctuations (p=B � 1), the density may be considered constant (� �
�0). In general, volume compression will also in
uence the air temperature (T ), and the

bulk modulus depends on the way this variable is related to the pressure and volume. The

general equation of state for a perfect gas is [84]:

P V = RT ; (2.4)

where R is a constant dependent on the type of gas. Equation (2.4) can be further

speci�ed by determining the level of thermal energy transfer within the gas. It has been

experimentally found that in acoustic processes no appreciable heat conduction takes place

[84, 52]. This type of thermodynamic behaviour is called adiabatic and its corresponding

equation of state for a perfect gas is [84]:

P
P0 =

�
�

�0

�

; (2.5)

where 
 = Cp=Cv is the ratio of speci�c heats at constant temperature and constant

volume, respectively 1. In the case of small pressure 
uctuations, the bulk modulus may

1See appendix A for thermodynamic constants.
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x
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z

Figure 2.1: A spatially �xed volume of air experiencing pressure forces in three dimensions.

be expressed in terms of the �rst coeÆcient of the Taylor-expansion of an experimentally

derived equation of state [84]:

B = �0

�
@P
@�

�
�0

: (2.6)

Now di�erentiating (2.5) with respect to �, and substituting (2.6) gives the value for the

adiabatic bulk modulus:

B = 
 P0: (2.7)

2.1.2 The Linearised Wave Equation

In the absence of viscothermal losses2, all energy involved in acoustic wave motion is

mechanical, and all forces involved are determined by the mechanical properties such as

de�ned in section 2.1.1. Consider the volume depicted in �gure 2.1. This spatially �xed

volume has mass 
ux and experiences pressure forces in three dimensions (x; y; z). In order

to obtain a di�erential equation for describing the acoustic wave motion in this volume,

two fundamental equations are required. The �rst one is the equation of continuity:

@�

@t
� V0 = �

�
@(��x)

@x
+
@(��y)

@y
+
@(��z)

@z

�
� V0

or
@�

@t
= �r � (�~�) ; (2.8)

2Viscothermal losses occur due to heat conduction and viscous drag.
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where ~� denotes the particle velocity vector. This equation states that the net in
ux of

mass must be equal to the total mass increase rate of the volume. Substituting (2.3) into

(2.8) and assuming small pressure 
uctuations (p=B � 1) leads to the linear equation of

continuity:
1

B

@p

@t
+r � ~� = 0: (2.9)

The second equation is the application of Newton's second law to the mass of volume V0:

�
�
@P
@x

+
@P
@y

+
@P
@z

�
V0 = (�V0)

@2~�

@t2

or

�rP = �

 
@2~�

@t2

!
; (2.10)

which states that the total force applied in each direction should equal the mass times

acceleration, where ~� is the local 
uid particle displacement vector. De�ning the particle

velocity ~� = @~�=@t, and taking into account that the 
uid moves ~� dt in time dt, allows

us to write the local acceleration as [84]:

d2~�

dt2
=
@~�

@t
+ �x

@~�

@x
+ �y

@~�

@y
+ �z

@~�

@z
: (2.11)

The higher order terms on the right side of (2.11) cause the force equation to be non-linear.

Fortunately, at small pressure 
uctuations these terms are very small, so the expression

for acceleration may be simpli�ed
h
@2~�=@t2 = @~�=@t

i
. Now again assuming a constant

density � � �0 and using the fact that rP = rp, we can reduce (2.10) to the linear force

equation:

�0
@~�

@t
= �rp: (2.12)

Taking the divergence of (2.12) and di�erentiating (2.9) with respect to t allows the elim-

ination of ~� and results in the linearised lossless wave equation:

r2p =
1

c2
@2p

@t2
: (2.13)

where r2 is the Laplacian operator for Cartesian coordinates3, and c =
p
B=�0 is the

acoustic wave velocity4.

3See appendix B for the de�nition of various coordinate systems.
4In the remaining part of the thesis, the suÆx \0" in �0 is suppressed, thus from here on � indicates a

constant density value.
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2.1.3 Distributed Models and Lumped Elements

For propagation of plane waves in one dimension only, the wave equation reduces to:

@2p

@x2
=

1

c2
@2p

@t2
: (2.14)

The solution of (2.14) for frequency ! takes the form of a superposition of forward- and

backward-travelling waves:

p(x; t) = p+(x; t) + p�(x; t)

= Aej(!t�kx) +Bej(!t+kx); (2.15)

where A and B represent the amplitudes of the forward and backward travelling waves,

and k = !=c is the wave number. The acoustic wave length of the longitudinal plane wave

for frequency ! is � = 2�c=!. Suppose now that this wave propagates in an enclosed air

volume V . If the length of V in the x-direction is large in comparison with the wavelength

�, (2.15) describes planar wave motion for frequency ! at all points x along the axis.

Such a model of wave propagation is referred to as a distributed acoustic model. On the

other hand, if the wavelength is not small in comparison with the dimensions of V , the

time-varying behaviour of the acoustic variables is almost independent of distance over

the dimensions of the device [84]. Modelling wave motion is strongly simpli�ed in this

case, since spatial coordinates may be ignored. Acoustical devices in this long-wavelength

limit or low-frequency limit are usually termed lumped acoustic elements.

A simple example of an acoustic system that can be described with lumped acoustic

elements is the Helmholz resonator. This system consists of a small acoustic cavity that

communicates with the outside through a short neck (see �gure 2.2). The acoustic mass

of the air in the neck is:

M = � S l: (2.16)

Suppose that an external force F1 is applied to mass M . Newton's second law states that

the force equals mass times acceleration:

F1 =M
d2x

dt2
; (2.17)

where x represents the displacement of the air mass in the neck. This force will cause the

neck air mass to move, which will trigger a restoring force from the acoustic volume (see

�gure 2.2). Assuming linear elastic behaviour (equation (2.1)), the restoring force due to
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l

Figure 2.2: Schematic representation of an acoustic Helmholz resonator. The driving-force F1
causes a displacement of the air in the neck and triggers a restoring force F2 due to compression
of the volume V .

a volume compression dV is:

F2 = �p S = �B S dV
V
: (2.18)

The volume compression in the cavity due to a neck air displacement x is:

dV = S � x: (2.19)

If we assume that the opening at the end of the neck presents a mechanical resistive force

F3 = Rmech � (dx=dt), it follows that the net force applied on M is:

F = F1 � F2 + F3: (2.20)

Combining (2.20), (2.19) and (2.18) gives the di�erential equation describing the neck air

mass motion:

M
d2x

dt2
+Rmech

dx

dt
+Kx = F: (2.21)

where K = �c2S2=V is the acoustic sti�ness of the volume V . Equation (2.21) describes

a driven harmonic oscillator5. When referring to acoustic systems, it is custom to express

the behaviour of a lumped acoustic element in terms of its acoustic impedance, which

is not the same as the mechanical impedance. For frequency !, the acoustic impedance

expresses the frequency-dependent ratio (Z(!) = p(!)=u(!)), where u = S �� is the volume
velocity. The mechanical impedance of the Helmholz resonator is:

Zmech(!) =
F (!)

v(!)
= j!M +Rmech +

K

j!
; (2.22)

5see appendix F for the mathematics of the driven harmonic oscillator.
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Figure 2.3: Equivalent network of the acoustic Helmholz resonator.

where v = @x=@t is the velocity of the neck air mass. The acoustic impedance is

Z(!) =
p(!)

u(!)
=
F (!)S�1

v S
=
Zmech(!)

S2
: (2.23)

Often it is convenient to use the analogy between electrical circuits and acoustic systems.

In the case of the Helmholz resonator, we can derive an equivalent network (see �gure 2.3),

and write the acoustic impedance in terms of the components of this network:

Z(!) = j!L+R+
1

j!C
; (2.24)

where L = �l=S is the acoustic inertance, R = Rmech=S
2 is the acoustic resistance. and

C = V=(�c2) is the acoustic compliance.

In application to modelling wind instrument bores, both the distributed modelling and

the lumped element approach are useful. The dimensions of wind instrument air columns

are usually such that the main bore is well represented by a distributed model, whereas

small acoustical devices such as toneholes and mouthpieces may be modelled as lumped

elements.

2.2 Wave Propagation in Non-Flaring Bores

There are two elemental bore shapes that appear in musical wind instruments: cylindrical

bores and conical bores. For such \non-
aring" bore shapes, the solution of the wave equa-

tion can be split up into di�erent modes of propagation. For cylindrical bores, the wave

equation can be solved analytically in a cylindrical coordinate system. A one-dimensional

solution exists in the form of longitudal propagation of plane wavefronts, and is usually

referred to as the plane wave mode. Because the higher modes in cylindrical pipes are

evanescent at low frequencies, the plane wave mode is the \primary" mode of the system.

For conical bores, such a one-dimensional solution also exists, in the form of propagation

of spherical wavefronts. For both elemental bore shapes, the \primary mode" represents
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wave propagation in which all the gas particles in the wavefront move with the same speed

and phase, and with the wavefront perpendicular to the walls of the bore. More complex

motion in cylindrical and conical ducts involves some form of transverse 
ow, and requires

contributions from higher propagation modes.

The analytical solution of wave motion in bores with varying cross-section is generally

much more complicated. The main reason for this is that in the cylindrical and spher-

ical coordinate system, the wave equation can be solved in separated coordinates. This

means that the di�erent modes remain distinct at all times, i.e., there is no conversion of

acoustical energy between the modes. Such a coordinate system does not usually exist in

horns with varying cross-section. Non-separability of the horn wave equation means that

mode-conversion is inevitable, i.e. all acoustic wave motion is composed of a mixture of

higher modes [25].

A one-dimensional formulation of wave propagation in 
aring horns exists in the form

of Webster's equation [164]. For wave propagation governed by this equation, the prop-

agation constant depends on a parameter called the horn function. We may formulate a

certain class of 
aring horns for which the horn function is constant. Such horns are similar

to cylindrical and conical bores in the sense that they have uniform propagation charac-

teristics. In other words, they act as waveguides in which the waves smoothly propagate

from one end to the other without back-scattering. If we assume that the wavefronts that

propagate inside the horn are planar, then the pro�le of such a horn can be described with

a simple mathematical formula, and the family of horns of this type is sometimes referred

as Salmon horns, after [117, 118]. Unfortunately, the assumption of plane waves in a 
ar-

ing horn is not very convincing from a physical point of view, since the wavefront tends to

\bulge" as it travels through the horn. Assuming spherical waves is more realistic, but in

that case the condition of uniform propagation characteristics does not lead to a simple

mathematical formulation of the horn radius as a function of axial distance [25]. More im-

portant to the scope of the present study is that, even in the case of uniform propagation

characteristics, Webster's equation does not allow for a simple time-domain implementa-

tion, mainly because propagation in a 
ared horn is strongly frequency-dependent, and

would require powerful and computationally expensive digital approximation techniques.

The present study is mainly concerned with eÆcient discrete-time modelling, therefore we

limit ourselves in this section to modelling non-
aring bore sections. However, we may

approximate the acoustic behaviour of moderately 
aring bores with the use of piecewise

modelling techniques.
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2.2.1 Cylindrical Bores

First the hypothetical case of wave motion in an in�nitely long cylindrical pipe is discussed.

This means no re
ections appear in the x-direction, and the solutions are conveniently

somewhat simpli�ed. The wave motion in a cylindrical bore can be divided into axial

motion (x), transverse radial motion (a), and transverse concentric motion (�). In these

cylindrical polar coordinates (a; �; x), the wave equation is [52]:

1

a

@

@a

�
a
@p

@a

�
+

1

a2
@2p

@�2
+
@2p

@x2
=

1

c2
@2p

@t2
: (2.25)

Assuming that the tube walls are perfectly rigid, the radial pressure gradient should vanish

at the wall (a = a0): �
@p

@a

�
a=a0

= 0: (2.26)

Equation (2.25) can be separated into three di�erential equations corresponding to the

motion along each coordinate-axis, and has solutions of the form [52, 119]:

pmn(a; �; x) = p0 e
(�jm�) � Jm

�
�mna

a0

�
� ej(�kmnx+!t); (2.27)

where Jm is a Bessel function and �mn is de�ned by the boundary condition (2.26) such

that the derivative J
0

m(�mn) is zero. Equation (2.27) expresses pressure wave solutions for

each mode (m;n), having m nodal diameter lines and n nodal circular lines, so the �rst

mode (0; 0) is the plane wave mode. For each mode (m;n), the axial motion at frequency

! takes the form:

p(x; t) = Ce�j(kmnx+!t); (2.28)

where C is a constant de�ned by the �rst two terms of the product in (2.27), and the

cylindrical wave number kmn is de�ned by:

kmn =

s
k2 �

�
�mn

a0

�2
; (2.29)

where k = !=c is the free space wave number. In order for a mode to propagate at a certain

frequency, its wave number should be real. It can be seen from (2.29) that this is only the

case if the term
h
k2 � (�mn=a0)

2
i
is positive. For the plane wave mode (0; 0) this is true

at all frequencies, so this mode propagates unconditionally. For each secondary mode,

a certain critical frequency !c exists above which the wave number becomes imaginary.

Frequencies below this cut-o� frequency decay over distance, in other words the mode is

evanescent for ! < !c. As can be seen from (2.29), the cut-o� frequency for mode (m;n)
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is de�ned as:

!c =
�mnc

a0
: (2.30)

The cut-o� frequencies of the �rst two transversal modes (1; 0) and (2; 0) are !c = 1:84c=a0

and !c = 3:05c=a0, and for the �rst non-planar axial mode (0; 1) we have !c = 3:83c=a0.

The radius of a cylindrical bore typically found in musical instruments roughly varies be-

tween 3mm and 10mm. For example, the cylindrical part of a clarinet bore typically has

a radius of about 7:5mm. Assuming a wave velocity c = 343:0m=s, the cut-o� frequencies

of the (1; 0), (2; 0) and (0; 1) mode of the clarinet bore are 13:5kHz, 22:2kHz and 27:9Hz,

respectively. Although propagation of these higher modes is in principle possible at fre-

quencies above their cut-o� values, there is usually no appreciable excitation of the higher

modes in musical instrument bores. This is due to the fact that high frequencies are usu-

ally strongly damped. Most wind instrument bores are either terminated by an open end

or a bell with an open end, both functioning as a lowpass re
ection �lter for the waves

that propagate towards the bell. Further lowpass �ltering occurs due to viscothermal

losses. Therefore there is no signi�cant build-up of standing waves at frequencies above

the cut-o� frequencies of the higher modes. Taking into account this simpli�cation, we

may disregard the in
uence of the higher modes, and reduce the wave equation (2.25) to:

@2p

@x2
=

1

c2
@2p

@t2
: (2.31)

The pressure wave solution for frequency !, written as a function of place x and time t is:

p(x; t) = p+(x; t) + p�(x; t)

= Aej(!t�kx) +Bej(!t+kx); (2.32)

where A and B represent the amplitudes of the forward- and backward-travelling pressure

waves, respectively, at the bore entry (x = 0) at time t = 0. The particle velocity solution

can be found using the linear force equation (2.12). For tubular acoustic wave motion,

it is usually more convenient to compute in terms of volume velocity u = S � � rather

than particle velocity �, where S = �a20 represents the pipe area. The solution for volume

velocity waves is:

u(x; t) = u+(x; t) + u�(x; t)

= A

�
S

�c

�
ej(!t�kx) � B

�
S

�c

�
ej(!t+kx): (2.33)
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In the case of wave propagation in forward-direction only (i.e., p�(x; t) = 0), the acoustic

impedance at any point x in the pipe is:

Z0 =
p+(x; t)

u+(x; t)
=
�c

S
: (2.34)

This \one-way" acoustic impedance Z0 in a bore is usually referred to as the characteristic

impedance. Note that for propagation in backward-direction, we have:

Z0 = � p
�(x; t)

u�(x; t)
: (2.35)

So far, the discussion has been limited to pipes of in�nite length. More insight can be

established by assuming a pipe-length L and a termination load ZL(!). The termination

load de�nes the relation between pressure and volume velocity at the far end (x = L):

ZL(!) =
p(L; t)

u(L; t)
= Z0

�
p+(L; t) + p�(L; t)

p+(L; t)� p�(L; t)
�
: (2.36)

The termination load is directly related to the re
ectance of forward-travelling waves at

the end of the cylindrical bore. A re
ectance is expressed as the fraction of the incident

wave that is re
ected. Given a termination load ZL(!) and a characteristic impedance

Z0, the end-re
ectance is formulated:

RL(!) =
p�(L; t)

p+(L; t)
=
ZL(!)� Z0
ZL(!) + Z0

: (2.37)

In general it is also very useful to know the ratio of pressure waves at the bore entry

(x = 0). Evaluating (2.32) at the bore entry and bore end gives:

p+(0; t) =
h
e+jkL

i
p+(L; t); (2.38a)

p�(0; t) =
h
e�jkL

i
p�(L; t): (2.38b)

Using (2.37), the re
ectance at the entry yields:

Rf(!) =
p�(0; t)

p+(0; t)
= e�2jkL �RL(!): (2.39)

The exponential term in (2.39) simply represents the round-trip of the pressure wave

through the pipe. The impedance at the bore entry is usually referred to as the input

impedance, and is found by combining (2.32), (2.33), (2.34) and (2.39):

Zin(!) =
p(0; t)

u(0; t)
= Z0

�
1 +Rf(!)

1�Rf(!)

�
: (2.40)
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2.2.2 Conical Bores

In spherical coordinates (�; #; r), the wave equation is [98, 119]:

1

r2
@

@r

�
r2
@p

@r

�
+

1

x2sin#

@

@#

�
sin#

@p

@#

�
+

1

r2sin2#

@2p

@�2
=

1

c2
@2p

@t2
: (2.41)

The boundary condition at the wall (# = #0) is that the pressure gradient vanishes:�
@p

@#

�
#=#0

= 0: (2.42)

The Helmholtz-version of equation (2.41) can be separated into three di�erential equations

corresponding to the motion along each coordinate, and has solutions of the form [119]:

pmn(r; #; �) = p0 e
�jm� ��m

n (cos#) �
��mnr

a

�
�
Jn+ 1

2
(kx)

(kx)
1
2

; (2.43)

where �m
n (cos#) is a Legendre function and Jn+ 1

2
(kx) is a Bessel function. The computa-

tion of the possible modes and their cut-o� frequencies is much more complicated than in

the case of cylindrical coordinates. For conical bore segments of dimensions that appear

in musical instruments, the cut-o� frequencies will generally be lower than for cylindrical

segments [119]. However, as was explained earlier for cylindrical bores, excitation of these

higher modes will not happen at a signi�cant level in musical instruments. Taking into

account only the primary mode, the wave equation (2.25) reduces to:

@2p

@r2
+

2

r

@p

@r
=

1

c2
@2p

@t2
; (2.44)

with the pressure wave solutions:

p(r; t) = p+(r; t) + p�(r; t)

=
A

r
ej(!t�kr) +

B

r
ej(!t+kr); (2.45)

where A and B represent the forward- and backward-travelling pressure waves, respec-

tively, at the bore entry (x = 0) at time t = 0. The volume velocity waves are found by

rewriting (2.12) for spherical coordinates:

�

S

@u

@t
= �@p

@r
: (2.46)
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Now substituting (2.45) and integrating with respect to t yields the volume velocity wave

solution:

u(r; t) = u+(r; t) + u�(r; t)

=

�
1 +

1

jkr

�
A

r

�
S

�c

�
ej(!t�kr) �

�
1� 1

jkr

�
B

r

�
S

�c

�
ej(!t+kr): (2.47)

The characteristic impedance in a conical bore depends on frequency, location and travel-

ling direction:

Z+
0 (r; !) =

p+(r; t)

u+(r; t)
=
� �c
S�

�� jkr

jkr+ 1

�
; (2.48a)

Z�0 (r; !) = � p
�(r; t)

u�(r; t)
=
� �c
S�

�� jkr

jkr� 1

�
; (2.48b)

where S� is the (spherical) local wave surface and r is the local cone apex distance. For a

cone truncated at r = r0, the length taken is that along the cone wall:

L� = rL � r0: (2.49)

Given a termination load

ZL(!) =
p(L�; t)

u(L�; t)
=
p+(L�; t) + p�(L�; t)
p+(L�;t)

Z+
0 (!)

� p�(L�;t)

Z�0 (!)

; (2.50)

the end-re
ectance of this truncated cone is:

R�L(!) =
p�(L�; t)

p+(L�; t)
=
ZL(!)� Z+

0 (!)

ZL(!) + Z�0 (!)
: (2.51)

Evaluation of (2.45) at the bore entry and bore end gives:

p+(r0; t) =
rL
r0

h
e+jkL

�
i
p+(L�; t); (2.52a)

p�(r0; t) =
rL
r0

h
e�jkL

�
i
p�(L�; t); (2.52b)

thus the re
ectance at the cone entry is:

R�f(!) =
p�(r0; t)

p+(r0; t)
= e�2jkL

� �R�L(!): (2.53)

The exponential term represents the round-trip time of the pressure wave through the

cone. The input impedance at the bore entry is found by combining (2.45), (2.47), (2.48)
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and (2.53):

Zin(!) =
p(r0; t)

u(r0; t)
=

2
6664 1 + R�f(!)

1

Z+
0 (r0; !)

� R�f(!)

Z�0 (r0; !)

3
7775 : (2.54)

Note that the re
ectances R�L(!) and R
�

f(!) have been computed according to spherical

coordinates here. In other words, they are spherical wave re
ectances, which are not

equivalent to plane wave re
ectances. How to compute the plane wave re
ectance of a

conical section is discussed in section 2.3.

2.2.3 Viscothermal Losses

In the previous sections, it was assumed that all wave propagation is lossless. In reality,

wave energy is absorbed from the main mechanical process due to wall vibrations and

viscothermal losses near the wall. In musical instruments, the wall vibrations are usually

small enough to be neglected [52]. Thermal losses (heat conduction) and viscous drag occur

at the boundary layer of a bore, and have a signi�cant damping e�ect on the propagating

waves. The magnitude of these e�ects depends strongly on the relative thickness of the

boundary layers in which they occur. Given a bore radius (a), the ratio of the tube radius

to the viscous boundary layer is [75]:

av(!) =

�
!�

�

� 1
2

a; (2.55)

where � is the shear viscosity coeÆcient. A similar ratio can be found for the thermal

energy exchange between the wall and the air [75]:

at(!) =

�
!�Cp

�

�1
2

a; (2.56)

with the speci�c heat constant Cp and thermal conductivity �. The next step is to �nd

out how these parameters are related to the exact in
uence of viscothermal e�ects on

the transmittance of waves. This can be done by rewriting the characteristic impedance

Z0 in a complex, frequency-dependent form, and writing the product jk in the term

e�jkx as a lossy, complex propagation constant �. Expressions for Z0 and � for lossy

cylindrical ducts were found by Benade [21] and later improved by Keefe [75] in the form

of truncated expansions. These expansions are derived in terms of both av and at, but
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may be conveniently formulated as a function only av:

Z0(!) =
�c

S

��
1 + d1a

�1
v � d3a�3v

�
+ j

�
d1a

�1
v + d2a

�2
v + d3a

�3
v

��
; (2.57a)

�(!) = �(!) + j

�
!

v(!)

�
=
�!
c

� ��
e1a

�1
v + e2a

�2
v + e3a

�3
v

�
+ j

�
1 + e1a

�1
v � e3a

�3
v

��
;

(2.57b)

where the coeÆcients (di; ei) depend on the thermodynamic constants6 �, c, and 
, where

� = at=av .

No upper limit is given for the value of av by Keefe in [75], but comparisons by Amir

et al. [11] between theory and experimental results on acoustic bores of dimensions of

the same order as musical instruments have indicated that equations (2.57) are valid for

upto at least 6kHz. There are in fact indications that these equations are valid for a

larger bandwidth; Sharp [126] has carried out bore reconstructions from experimentally

determined impulse response data, in which losses were taken into account using equations

(2.57). Using a bandwidth of 25kHz, bore pro�le reconstructions in which losses were taken

into account were shown to be accurate within 0:05 millimeter, whereas reconstructions

in which losses were neglected exhibited signi�cant deviations from the direcly measured

pro�le.

Cylindrical Bores

The e�ect of including viscothermal losses in cylindrical and conical bore models is well

observed in the bore transmittance (the �lter transfer function for waves travelling from

one end to the other). For a cylindrical duct of length L, the transmittance is:

Ht(!) = e��L; (2.58)

where the product G = �L fully characterises the transmission losses. In the lossless case

Ht(!) is the frequency-domain equivalent of a pure delay t = L=c. Figure 2.4 shows the

magnitude (a) and phase delay7 (b) of the lossy transmittance for a duct with length

L = 0:4m and radius a = 0:5cm. The attenuation is relatively small at low frequencies,

and increases slowly with frequency. The small dispersion due to viscothermal e�ects is

mainly concentrated in the low-frequency area.

The real and imaginary part of the normalised lossy characteristic impedance Z0(!) �
S=(�c) of the duct is depicted �gure 2.4c and �gure 2.4d, respectively. The imaginary

component is relatively small in comparison with the real component, and the deviation
6See appendix A for the de�nition of the coeÆcients di and ei.
7The phase delay of a response H(!) is de�ned as �(6 H(!)=!).
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Figure 2.4: E�ects of taking into account viscothermal losses in modelling a cylindrical pipe. Left:
pipe transmittance magnitude (a) and phase delay (b). Right: real part (c) and imaginary part
(d) of the pipe characteristic impedance. The pipe length is L = 0:4m and the radius is a = 0:5cm.

of the real component from the lossless impedance Z0 = �c=S is also very small. Hence

the frequency-dependence can usually be neglected, and we may simply use Z0 = �c=S.

Conical Bores

It can be seen from (2.55) that the main variable in the formulation of viscothermal losses

in cylindrical bores is proportional to its radius. For conical bores, the radius varies with

the distance, so the calculation of the transmittance is somewhat more complicated. In

order to determine analytically the losses in a cone it is convenient to �rst write the viscous

boundary layer ratio av as a linear function of the local apex distance r:

av(r) = sin(�) �
�
2 (1� cos�)

sin2�
�
�
!�

�

�� 1
2

� r

=

�
2

�
!�

�

��
1� L

L�

��1
2

� r: (2.59)

Here av is the viscous boundary layer ratio that relates to the e�ective radius a� that

corresponds to the surface S = �(a�)2 of a spherical wavefront, and L� is the length along

the cone wall (see �gure 2.5). The term 2(1�cos�)=sin2� represents the ratio between the

surface area of a spherical wavefront and that of a plane wavefront at equal cross-section
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Figure 2.6: Graphical representation of the transmission exponent G, for a cylindrical bore section
(a) and a conical bore section (b). Given � as a function of propagation distance, G equals the
area under this function between bore entry and bore end. The curve in (b) is purely symbolical.

(See appendix B). For a cylindrical section, the transmission exponent G is computed as

the product �L (see (2.58)). Graphically, G may be interpreted as the area under the

function �(x) in between the values x = 0 and x = L (see �gure 2.6a). For a conical

section, this area (see �gure 2.6b) is not simple product, but must be computed as an

integrand:

G =

rLZ
r=r0

�(r)dr =
�!
c

�
� [Ia + jIp] ; (2.60)

where Ia is the attenuation integral and Ip the phase integral, for which analytic expressions

can be found after substitution of (2.57). The attenuation integral is:

Ia =
� c
!

� rLZ
r=r0

�(r)dr

=

�
e1
ca

�
log(rL=r0) +

�
e2
c2a

�
(r�10 � r�1L ) +

�
e3
2c3a

�
(r�20 � r�2L ); (2.61)
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Figure 2.7: Transmission losses in a divergent conical bore section of length L� = 2m, with a bore
radius varying from r0 = 2mm to rL = 10mm, computed using the mean-radius method and the
integrand method.

and the phase integral is:

Ip = c

rLZ
r=r0

v�1(r)dr

= (r0 � rL) +

�
e1
ca

�
log(rL=r0)�

�
e3
2c3a

�
(r�20 � r�2L ); (2.62)

where log(x) denotes the natural logarithhm of x. In the �eld of musical acoustics, the

fact that the radius varies with axial distance in a cone is often considered negligible, and

usually the losses in a conical section are calculated as for a cylindrical section with iden-

tical length and with a radius that equals the mean radius of the cone [52, 25]. For bores

of short length and with small conical angle the discrepancy due to this simpli�cation

is extremely small, but for longer conical sections, the accuracy is signi�cantly improved

when using the integrand method. Figure 2.7 shows the magnitude response of the trans-

mittance of a divergent cone of length L� = 2m. The radii at the small and the large

end were taken to be r0 = 2mm and rL = 10mm, respectively. The di�erence between

the \mean-radius method" and the \integrand method" is most apparent at the higher

frequencies.

We can also model the long conical section as a piecewise series of short conical sections,

using the mean radius method for each section. It was found that if one keeps increasing the

number of sections, the solution converges towards the result obtained using the integrand

formulation. This veri�es the correctness of the integrand method.
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Figure 2.8: Temperature pro�le measured in a cornetto under playing conditions.

2.2.4 Thermal Gradients

Viscothermal e�ects in wave propagation are dependent on temperature. So far it has been

assumed that the temperature is constant throughout a tubular system. However, under

playing conditions the higher temperature of the player's mouth and heat conduction in

the boundary layers result in a temperature pro�le along the length of the air column. To

investigate the e�ect of such a thermal gradient on the acoustics of a brass instruments,

van Walstijn et al. [155] measured the spatial variation of temperature inside a cornetto

under playing conditions, using thermocouples. It was found that the temperature inside

the air column of the cornetto varies linearly with distance from the mouthpiece end of the

instrument (see �gure 2.8). This temperature pro�le was then reproduced during input

impedance measurements8 by applying voltages to heating tapes wrapped around the

instrument. For comparison, measurements were also carried out on a \cold" instrument

and on an instrument uniformly heated to the mean value of the temperature pro�le.

In �gure 2.9a the measured impedance curve for an unheated cornetto �lled with air at

room temperature (16oC) is compared with the measured impedance curve for the same

cornetto with temperature gradient. The amplitudes of all resonances di�er substantially

here, as well as the positions of the higher frequency resonance peaks. On the other hand,

the input impedance curve of the uniformly heated (29oC) hardly di�ers from the curve

of the cornetto with thermal gradient (see �gure 2.9b). These results imply that the

cornetto air column with a thermal gradient is accurately represented by a model with

uniform temperature equal to the average of the temperature pro�le. In other words, it

may be assumed that the presence of a thermal gradient has no signi�cant in
uence on the

acoustics of the instrument. In the scope of this study, this assumption will be considered

to hold for all brass and woodwind instruments.

8See appendix J for a short description of the acoustic measurement techniques used in this study.
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Figure 2.9: In
uence of a thermal gradient. Left: measured input impedance of a cornetto with
uniform temperature (16oC) and with thermal gradient (25oC to 33oC). Right: measured input
impedance of a cornetto with uniform mean temperature (29oC) and with thermal gradient (25oC
to 33oC).

2.2.5 Open-End Re
ectance

Most brass and reed woodwind instrument air columns are open-ended. The transi-

tion from inside the air column to free space corresponds to a change in characteristic

impedance for the travelling waves. At high frequencies, the acoustic wavelength is small

compared to the bore diameter, which means that the radiation impedance is approx-

imately equal to the characteristic impedance. At these frequencies, the waves travel

easily through the \acoustic barrier" imposed by the small change of impedance. At lower

frequencies, the change from small tubular dimensions to free space is more signi�cant,

since the acoustic wavelength is relatively large in comparison with the bore diameter.

This results in a radiation resistance (R) and radiation reactance (X ), which represent

dissipation and dispersion of the travelling waves, respectively. Kinsler et al. [84] give a

low-frequency approximation of the radiation impedance of an un
anged cylindrical pipe:

ZL = R+ jX
= Z0

�
1

4
(ka)2 + j0:6ka

�
; (2.63)

where k is the free-space wave number and a the pipe radius. Levine and Schwinger

[88] developed a more accurate approximation of the radiation impedance for un
anged

ends, in which mode-coupling at the open-end discontinuity is taken into account. Due to

the high mathematical complexity of this formulation, a curve �tting procedure is often

applied to their results in order to obtain a more manageable representation. Causs�e et

al. applied such a procedure in [35] at frequencies corresponding to ka < 3:5. Later,

Scavone [119] applied similar methods to obtain an open-end re
ectance approximation
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Figure 2.10: Open end re
ectance magnitude response of a cylindrical pipe with radius a = 2cm.

for a much wider frequency range (ka < 20). This method enables application to high

sampling-frequency sound synthesis. In �gure 2.10 the low-frequency approximation via

equation (2.63) is compared to Scavone's extension of Levine and Schwinger's results.

The open-end radiation models described above were computed for open-ended cylin-

drical ducts. Computing the radiation impedance of open-ended acoustic cones is even

more complex. An accurate impedance load can be obtained by considering the e�ects of

mode-coupling at the open-end discontinuity. This approach has been taken by Zorumski

[169], who formulated the radiation load for each individual mode in the case of an open-

ended waveguide with in�nite 
ange. If mode-coupling e�ects are small, then the radiation

load of an open-ended cone approximates to that of an open-ended cylinder. Causse et al.

[35] suggest that the transmission equations are similar for cones and cylinders and that

therefore the main di�erence lies in the larger wavefront surface for spherical coordinates.

Scaling the cylindrical open-end model by the spherical/plane wavefront surface ratio then

gives an expression for the conical open-end radiation impedance Z�L:

Z�L(!) = ZL(!)
S

S�
; (2.64)

where ZL(!) is the cylindrical open-end radiation impedance, and S and S� represent the

plane and spherical wavefront areas at the open-end discontinuity, respectively.

2.3 Piecewise Modelling

As indicated in the introduction of section 2.2, no exact analytic solutions can be found for

the general case of bores with varying cross-section. However, approximate solutions can

be found via spatial discretisation of the horn into a piecewise series of short elemental

sections. A general name for this approach is piecewise modelling. This approach has
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previously been applied using cylindrical sections [107, 76, 10], conical sections [35, 76,

27, 10], and exponential sections [9, 27], where in all cases a single propagation mode was

modelled. Berners [27] has recently carried out an extensive study on one-dimensional

scattering methods, including those methods that are based on Webster's equation. As far

as the author knows, methods based on spatial discretisation which take into account the

higher order modes have only been applied using cylindrical sections (see, e.g., [7, 105, 8]).

It can be argued that it is unnecessary to consider more complex shaped sections, because

bending and bulging of the wavefront can already be represented within the (multi-modal)

piecewise cylindrical model. Although the in
uence of higher modes is of interest in the

scope of the present study, the computational methodologies involved in multi-modal

decomposition are beyond it. Hence we will limit ourselves to using the results obtained

with the multi-modal approach as a reference with which we can compare the results

obtained with the one-dimensional formulations.

2.3.1 Transmission-Line Models

A common objective in the �eld of wind instrument acoustics is to predict the input

impedance at the mouthpiece end of the air column. The classical method of piecewise

modelling is to start with a known radiation impedance ZL(!) at the open end, and

approximate the tubular pro�le with a series of cylindrical sections, that are considered to

function as lossy transmission-lines [107]. The input impedance at the mouthpiece end is

then obtained by successively computing the impedance relations between the individual

sections using the formula:

Zin;n = Z0;n
Zout;n + Z0;n tanh (�Ln)

Z0;n + Zout;n tanh (�Ln)
; (2.65)

where Zin;n, Zout;n, Z0;n and Ln are the input impedance, output impedance, characteristic

impedance and length of the nth section, respectively.

Keefe [76] gives a transfer-matrix formulation of the transmission-line model using

piecewise cylindrical and conical sections. For frequency !, the transmission-line matrix

relates the output pressure p2 and volume 
ow u2 to the input pressure p1 and volume


ow u1: "
p1

u1

#
=

"
A B

C D

# "
p2

u2

#
; (2.66)

where A, B, C and D are complex-valued. The values of these transmission-line matrix

elements for an individual cylindrical or conical section are given in section 2.3.2. Let Sn

denote such an ABCD-matrix for the nth section, then the ABCD-matrix that describes
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Figure 2.11: Two-port representations of an acoustic system, for acoustic pressure and volume
velocity (a), and propagating pressure waves (b).

the total piecewise model is computed as the cascade of the individual sections:

"
A B

C D

#
= S1 � S2 : : : � Sn : : : � SN�1 � SN: (2.67)

The input impedance is computed as follows: given a load impedance ZL(!) = p2=u2, the

input impedance Zin(!) = p1=u1, according to the matrix relation in (2.66) is:

Zin(!) =
AZL(!) +B

CZL(!) +D
: (2.68)

Let Z0 = �c=S0 be the characteristic impedance at the entry of the �rst section, then the

plane wave re
ectance is obtained via (2.40):

Rf(!) =
Zin(!)� Z0
Zin(!) + Z0

: (2.69)

2.3.2 Scattering Models

The ABCD-matrix is a two-port representation of an acoustical system, and is formulated

in terms of pressure and volume 
ow (see �gure 2.11a). Alternatively, the same system

may be described in terms of travelling waves, in this case pressure waves (see �gure 2.11b).

Such a model is often referred to as a scattering model. The relation between the pressure

waves on the left and the pressure waves on the right of the system can be expressed by

the following matrix equation:

"
p+1
p�1

#
=

"
E F

G H

# "
p+2
p�2

#
; (2.70)

where E, F , G and H are complex-valued and frequency-dependent. Matrices of this type

appear to have been applied originally in the �eld of micro-wave technology, where they

are sometimes referred to as wave-amplitude transmission matrices (see, e.g., [37]). In
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acoustic applications, they have been referred to as chain-scattering matrices [130] and

waveguide matrices [156, 119]. In this study we will use the latter term, or alternatively

use the term \EFGH-matrices". As in the case with ABCD-matrices, EFGH-matrices

can be cascaded, although some restrictions have to be made concerning the choice of

coordinate system. For example, the wave equation for conical bores is based on a spherical

coordinate system, and the characteristic impedance is de�ned in a di�erent way than for

the cylindrical coordinate system. This results in di�erent de�nitions of the acoustic

variables (p+; p�), so that multiplying the corresponding EFGH-matrices is in this case

not straight-forward. In order to obtain uniformity of waveguide matrices, they are de�ned

here according to cylindrical coordinates. Non-cylindrical bore sections are then de�ned

such that the input-variables (p+1 ; p
�

1 ) and output-variables (p+2 ; p
�

2 ) are de�ned according

to cylindrical coordinates:

p = p+ + p�; (2.71a)

u =
p+ � p�
Z0

; (2.71b)

where Z0 = �c=S is the characteristic impedance associated with the local cross-section

S. Furthermore, we note that in order to compute a cascade of two waveguide matrices

via matrix multiplication:

"
E F

G H

#
=

"
E1 F1

G1 H1

#
�
"
E2 F2

G2 H2

#
; (2.72)

the characteristic impedance Z1 at the output-end of the acoustic system represented by

the �rst matrix must be equal to the characteristic impedance Z2 at the input-end of the

acoustic system represented by the second matrix. If this condition is not ful�lled, then

an additional \impedance matching matrix" is required:

"
E F

G H

#
=

"
E1 F1

G1 H1

#
�
"
Eim Fim

Gim Him

#
�
"
E2 F2

G2 H2

#
; (2.73)

with "
Eim Fim

Gim Him

#
=

"
1 + Z1=Z2 1� Z1=Z2

1� Z1=Z2 1 + Z1=Z2

#
: (2.74)

EFGH-matrices are directly related to ABCD-matrices: suppose that the ABCD-

matrix for a certain acoustic system is known, then the corresponding EFGH-matrix can be

found by applying a simple matrix transformation. The formulae for this transformation

and the inverse transformation are given in appendix D. As in the case of ABCD-matrices,

EFGH-matrices can be used to compute the input impedance or re
ectance of an acousti-
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Figure 2.12: Piecewise cylindrical section model. The subscript l or r indicates a wave on the left
or right side of the bore section.

cal system. Given a load impedance ZL(!), the end re
ectance RL(!) is computed using

(2.37). The plane wave re
ectance is found by substituting the end re
ectance equation

p�2 = RL(!) � p+2 into (2.70), and solving for p�1 =p
+
1 :

Rf(!) =
p�1
p+1

=
G+HRL(!)

E + FRL(!)
: (2.75)

The input impedance can then be computed using (2.40).

2.3.3 Cylindrical Sections

Consider the piecewise cylindrical system in �gure 2.12. As seen in section 2.2.1, the

propagation of waves in section n of length Ln may be formulated as:

p+n;l =
�
e+�Ln

�
p+n;r; (2.76a)

p�n;l =
�
e��Ln

�
p�n;r: (2.76b)

In matrix formulation, (2.76) becomes:

"
p+n;l
p�n;l

#
=

"
e+�Ln 0

0 e��Ln

#"
p+n;r

p�n;r

#
= Pn �

"
p+n;r

p�n;r

#
: (2.77)

where Pn is the propagation matrix of the nth section. The conditions at the boundary

of the junction between sections n and n� 1 are that the pressure is continuous and that

the net 
ow is zero:

pn�1;r = pn;l; (2.78a)

un�1;r = un;l: (2.78b)
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Substituting the travelling-wave decomposition (2.71) gives:

p+n�1;r + p�n�1;r = p+n;l + p�n;l; (2.79a)

p+n�1;r � p�n�1;r
Z0;n�1

=
p+n;l � p�n;l
Z0;n

: (2.79b)

Solving for p+n�1;r and p
�

n�1;r yields the matrix equation:

"
p+n�1;r
p�n�1;r

#
=

1

2

"
1 +

Z0;n�1
Z0;n

1� Z0;n�1
Z0;n

1� Z0;n�1
Z0;n

1 +
Z0;n�1
Z0;n

#"
p+n;l
p�n;l

#
= Jn�1;n

"
p+n;l
p�n;l

#
: (2.80)

The �nal EFGH-matrix that describes the total piecewise model using is computed as the

following cascade:

"
E F

G H

#
= P1 � J1;2 �P2 : : : � Jn�1;n �Pn : : : � JN�2;N�1 �PN�1 � JN�1;N �PN : (2.81)

The elements of the ABCD-matrix for a single cylindrical section of length L and character-

istic impedance Z0 can be found by applying the EFGH to ABCD matrix transformation

formulae (appendix D) to (2.77):

A =
1

2

�
e+�L + e��L

�
= cosh (�L) ; (2.82a)

B =
Z0
2

�
e+�L � e��L� = Z0sinh (�L) ; (2.82b)

C =
1

2Z0

�
e+�L � e��L� = 1

Z0
sinh (�L) ; (2.82c)

D =
Z0
2Z0

�
e+�L + e��L

�
= cosh (�L) : (2.82d)

This result is equivalent to the general ABCD-matrix for cylindrical sections found in the

literature [76, 24, 119].

2.3.4 Conical Sections

For conical sections, the derivation of the propagation and junction scattering equations

is somewhat more complicated, since the associated wave equation is derived assuming a

spherical coordinate system. The di�erence in coordinate system results in two problems.

Firstly, in the case of coupling two conical sections of di�erent aperture angle (see �g-

ure 2.13), wave propagation in these sections is formulated within two di�erent (spherical)

coordinate systems. When a wavefront travels through such a conical junction, it has

to make a sudden \jump" in order to �t into the coordinate system of the next conical
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Figure 2.13: Junction of two conical sections.

section, which is physically not possible. This problem is clearly related to the fact that

the bulging of the wavefront in bores with varying cross-section requires contributions of

higher transversal modes, which are not present in the one-dimensional wave equation.

Amir et al. [10] address this problem by assuming pressure and volume velocity continuity

in the \missing volume" V (see �gure 2.13), and by taking into account the di�erence in

wavefront area across the volume. In the present study, we follow this approach. However,

we note that Berners [27] has o�ered a variety of alternative ways of addressing the \miss-

ing volume" problem, as well as addressing the related \doubly de�ned volume" problem

that accurs when modelling a junction in which the taper decreases.

The second problem is how to compute the plane wave re
ectance from a piecewise

conical model. Consider the arbitrary acoustical system depicted in �gure 2.14. Suppose

that this system can be represented with an EFGH-matrix, which, by de�nition, relates

plane input-waves to plane output-waves. The key observation is that if we want to

compute the plane wave re
ectance using (2.75), then the variables on both sides of the

system should be de�ned according to the \cylindrical" travelling wave decomposition

(2.71). In other words, an EFGH-matrix may be formulated for a non-cylindrical system,

by ensuring that the input- and output-waves are plane waves. Figure 2.15 illustrates

this concept for a single conical section. The cone input/output relations can be de�ned

acoustical
system

+
1p

−
1p −

2p

+
2p

(Z1) (Z2)

Figure 2.14: Two-port acoustical system, with travelling wave variables de�ned according to
cylindrical coordinates. Z1 and Z2 represent the characteristic impedances on the left and right
side of the system.
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Figure 2.15: A single conical section, connected on both ends with cylindrical tubing of matching
cross-section.

in a cylindrical coordinate system if the cone is coupled on both sides to a cylindrical

section. The EFGH-matrix for a single conical section can be formulated by deriving

the cone propagation equations and the scattering equations for both cylindrical-conical

junctions. The propagation equations for conical bores are given by equations (2.45). The

propagation equation for the cone in �gure 2.15 is expressed:

"
p+b
p�b

#
=

"
rc
rb
e+�L

�

0

0 rc
rb
e��L

�

#"
p+c

p�c

#
= P �

"
p+c

p�c

#
: (2.83)

The conditions at the left junction boundary in �gure 2.15 are:

p+a + p�a = p+b + p�b ; (2.84a)

p+a � p�a
Za

=
p+b
Z+
b

� p�b
Z�b

; (2.84b)

where Za is the characteristic impedance of the cylindrical bore and Z+
b and Z�b are the

characteristic impedances at the left end of the cone in positive and negative travelling

direction, respectively. Solving for p+a and p�a gives:

"
p+a

p�a

#
=

1

2

2
4 1 + Za

Z+
b

1� Za
Z�
b

1� Za
Z+
b

1 + Za
Z�
b

3
5" p+b

p�b

#
= Jl �

"
p+b
p�b

#
: (2.85)

The equations for the cylindrical-conical junction on the right side can be derived in a

similar way, which yields:

"
p+c

p�c

#
=

2
4 Zd+Z

�
c

Z+
c +Z

�
c

Z+
c

Zd

Zd�Z
�
c

Z+
c +Z

�
c

Z+
c

Zd
Zd�Z

+
c

Z�c +Z
+
c

Z�c
Zd

Zd+Z
+
c

Z�c +Z+
c

Z�c
Zd

3
5
"
p+d
p�d

#
= Jr �

"
p+d
p�d

#
: (2.86)
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Figure 2.16: Piecewise conical model of a smoothly varying cross-section. The pro�le of the
piecewise approximation exhibits no diameter discontinuities, only taper discontinuities.

The EFGH-matrix for a single conical section is then computed as the product:

"
E F

G H

#
= S = Jl �P � Jr: (2.87)

In piecewise conical modelling of horns with smoothly varying cross-section, the sec-

tion geometries are usually chosen such that only taper discontinuities result [10] (see

�gure 2.16). Within this approach, the wavefront area discontinuities at the conical junc-

tions are neglected, so that no impedance matching junctions between individual sections

are required. In that case the complete piecewise conical model is computed by a straight-

forward cascade of the section matrices:"
E B

C D

#
= S1 � S2 : : : � Sn : : : � SN�1 � SN ; (2.88)

where Sn represents the nth the conical section. The EFGH-matrix (2.87) has in-

put/output variables de�ned according to cylindrical coordinates, so the formulae for

transformation to an ABCD-matrix as given in appendix D may be used. This is most eas-

ily done by treating each section-matrix in the decomposed form. In fact, the propagation-

matrix P may be further decomposed into:

P =

"
e+�L 0

0 e��L

#"
rc
rb

0

0 rc
rb

#
: (2.89)

The junction matrices are somewhat simpli�ed if we neglect the di�erence between spher-

ical and planar wavefront areas9 (i.e., Za = Zb and Zc = Zd), so that the EFGH-matrix

9Figure B.4 in appendix B shows that this di�erence is very small for small conical angles.
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Figure 2.17: Equivalent circuit of a conical bore section (after Benade [24]).

product for a single conical section can be written:

"
E F

G H

#
=

"
1 + 1

2�rb
1

2�rb

� 1
2�rb

1� 1
2�rb

#"
e+�L 0

0 e��L

#"
rc
rb

0

0 rc
rb

#"
1� 1

2�rc
� 1

2�rc
1

2�rc
1 + 1

2�rc

#
:

(2.90)

Applying the transformation to transmission-line matrices to each separate matrix in (2.90)

yields:

"
A B

C D

#
=

"
1 0
1

Za�rb
1

#"
cosh (�L) Zbsinh (�L)

Z�1b sinh (�L) cosh (�L)

#"
rc
rb

0

0 rb
rc

#"
1 0
1

�Zd�rc
1

#
:

(2.91)

This formulation as a product of four individual matrix elements corresponds to the equiv-

alent circuit of a conical waveguide [24], as depicted in �gure 2.17. The impedances of the

\conicity inertances" L1 and L2 associated with the left and right junctions are:

Z1 = j!L1 = Za�rb; (2.92a)

Z2 = j!L2 = �Zd�rc: (2.92b)

These impedances correspond to the ABCD-matrices that represent the conicity inertances

in (2.91). Computing the product in (2.91) yields the elements of the ABCD-matrix:

A =

�
rc
rb

�
cosh (�L)�

�
1

�rb

�
sinh (�L) ; (2.93a)

B =

�
rb
rc

�
Z0 sinh (�L) ; (2.93b)

C =

�
1

Z0

�("
rc
rb
�
�

1

�rb

�2#
sinh (�L) +

L

�r2b
cosh (�L)

)
; (2.93c)

D =

�
rb
rc

��
cosh (�L) +

�
1

�rb

�
sinh (�L)

�
; (2.93d)
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where Z0 = Za = Zb is the characteristic impedance at the bore entry. The expressions

for the ABCD-elements in (2.93) are in agreement with the values found in the literature

[24, 76]. The ABCD-matrix product computed without the assumption (Za = Zb and

Zc = Zd), is given in [119].

The fact that a single conical section can be represented by a simple equivalent network

has an interesting consequence. Namely, each of the four parts of the network may be re-

interpreted as a two-port network, for which the travelling wave decomposition may be

carried out as if the waves on either side of the two-port are plane waves. Hence we

may consider the cone as a cylindrical waveguide with three additional lumped elements.

Benade already indicated this property in [24]:

\the conical waveguide may be represented by a combination of impedance el-

ements that belong to the cylindrical guide and its derived lumped-constant

circuit elements."

Thus, although the waves inside the conical sections must from a physical point of view be

regarded as spherical waves, they may be treated as plane waves within a mathematically

equivalent model.

2.3.5 Piecewise Model Comparison

In order to study the accuracy and convergence of piecewise modelling methods, the

plane wave power re
ectances of two types of horns were computed, and the results were

compared with the results obtained via multi-modal decomposition, as described in [105,

8, 80]. The multi-modal method used in the present study employs a piecewise cylindrical

framework (this method is referred to as the \Discrete Segment (DS) method" in [105]),

taking into account a �nite set of non-planar axial modes. Results predicted with multi-

modal decomposition generally compare well with results obtained using the more general

but computationally considerably more expensive �nite di�erence model [105]. One of the

main conclusions in [8] is that adding only a few modes can be very e�ective in improving

the accuracy.

In the DS model, propagation and scattering are modelled with equations that are

simlar to those for the one-dimensional piecewise cylindrical model, but where each acous-

tic variable is represented with a vector. For example, pressure is denoted with the vector

P, where the element Pn is the pressure component of the nth axially symmetric mode;

n = 0 indicates the plane-wave mode. Within this notation, the acoustic impedance (which

relates pressure to volume velocity) takes on a matrix-form, thus we may write:

P = ZU; (2.94)
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Figure 2.18: Cylindrical junction with associated multi-modal impedance matrices.

whereU is the volume velocity vector and Z is the impedance matrix. Note that the corner-

element Z00 represents the \plane-wave impedance". We may also derive a re
ectance

matrix:

R = (Z�1c Z� I)�1 � (Z�1c Z+ I); (2.95)

where Zc is the characteristic impedance, which is a diagonal matrix. Again, the corner-

element R00 represents the plane-wave component, and this component is used for com-

parison with the one-dimensional scattering methods. Instead of following the exact DS

method outlined in [105], we will present the propagation and scattering equations in

the form as presented in [79, 80]. Let Z(0) denote the impedance at the input-end of a

cylindrical section, and Z(1) the impedance at the output-end (see �gure 2.18), then the

propagation through the cylindrical section is formulated:

Z(0) = (Z(1) � jD3Zc)(jD3Z
�1
c Z(1) + I)�1; (2.96)

where I is the identity matrix and D3 is a diagonal matrix for which the nth diagonal

is given by tan(knd), where kn is the wave number of the nth mode, and d is the length

of the cylindrical section. As explained in section 2.2.1, the nth mode only propagates

at frequencies for which kn is real. Scattering at a junction of two cylindrical sections is

implemented with

Z(1) = FZ(2)Ft; (2.97)

where Z(1) is the impedance at the input-end of the junction, Z(2) is the impedance at

the output-end of the junction, and F is a non-diagonal matrix that is derived using the

condition of continuous pressure and volume velocity at the junction boundary. We refer

to references [105, 79, 80] for the derivation of these equations. In our computations with

the DS method10, we included 11 modes (i.e., the plane wave mode plus the �rst ten

10A MATLAB
r
implementation of the DS model by Jonathan Kemp was used for computing the refer-

ence power re
ectance.
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Figure 2.19: The radius as a function of axial distance of the exponential horn and the trombone
bell horn.

non-planar axial modes).

The power re
ectance is calculated for the dimensions of the two horns depicted in

�gure 2.19. In both examples, we assume that the horn is terminated by an anechoic duct

of matching cross-section. Given a plane wave re
ectance Rf(!), the power re
ectance is

Rp(!) = jRf (!)j2 : (2.98)

Conveniently, the power re
ectance represents an entire class of horns of the same propor-

tions if plotted against normalised frequency f=fc, where fc = (3:84c)=(2�a) is the cut-o�

frequency of the �rst non-planar axial mode. Since we assume plane wave excitation of

the horn, transverse modes are not excited, thus fc is the lowest cut-o� of the system,

and any deviation from plane wave propagation for frequencies below fc must be due to

mode coupling. In both examples, the radius of the terminating duct is 114:5mm, which

corresponds to a cut-o� frequency fc = 1831Hz.

Naturally, the accuracy of the computation depends on the spatial resolution (i.e., the

number of piecewise sections N). In order to get insight into how quickly the piecewise

cylindrical and piecewise conical models converge, the computations were carried out a

number of times, each time using an increased number of sections. For each computed

power re
ectance Rp(!), an \error" was determined as the average of the summed absolute

di�erences with the power re
ectance R
0

p(!) obtained using the multi-modal method with

100 sections:

" =
1

M

MX
m=1

���R0

p(m�!)�Rp(m�!)
��� ; (2.99)

where each power re
ectance is evaluated for a set of M equally spaced frequencies (�!

is the frequency step).



44 CHAPTER 2. LINEAR MODELS OF TUBULAR ACOUSTIC SYSTEMS

The Exponential Horn

The 
are of the exponential horn is not very strong, so we may expect that one-dimensional

piecewise models perform reasonable well in this case. Figure 2.20a illustrates the conver-

gence of the one-dimensional piecewise models. The piecewise cylindrical model converges

quite rapidly, though clearly not towards a zero error. As could be expected, using conical

sections results in a smaller error. Perhaps somewhat surprising though is that increasing

the number of sections does not appear to reduce the error in this case: the minimum

error is in fact found for N = 6. Figure 2.20b shows the power re
ectances obtained when

N = 100. Apparently, the piecewise conical model forms a reasonable approximation

for this particular horn, whereas the piecewise cylindrical model clearly overestimates the

e�ective cut-o� of the horn.

The Trombone Bell

The same piecewise modelling and multi-modal decomposition computations were carried

out for the trombone horn. The pro�le of this horn was measured at a number of po-

sitions along the horn axis11 by Amir et al. [8]. Following their approach, we computed

intermediate points using third-order polynomial interpolation. The piecewise modelling

convergence for this horn is depicted in �gure 2.21a. As with the exponential horn, the er-

ror does not converge to a minimum when using the piecewise conical model. Furthermore,

it appears that using conical sections in this case does not give a signi�cantly improved

result in comparison with using cylindrical sections. (see Figure 2.21b). Apparently, the

trombone bell is not modelled particularly accurately with either of the one-dimensional

piecewise models. Because the trombone bell is characterised by a rapid 
are at the end,

a high level of mode coupling occurs at this point, which explains why the piecewise cylin-

drical model performs poorly in this case. On the other hand, the piecewise conical model

should to some extent approximate the e�ect of mode coupling, because each conical junc-

tion models the frequency-dependent scattering that occurs when the wavefront \bulges"

as the angle of conicity increases. However, the model is based on the assumption that

the wavefront takes on a spherical shape at all points along the horn: this assumption

typically breaks down at points where the horn exhibits a rapid 
are. Another problem

occurs whenever the gradient of the horn pro�le is steep at the boundary, such as with the

trombone horn. Due to the large angle of conicity at this point, there is a big \mismatch"

in predicted wavefronts, which results in a large \doubly de�ned volume" (see �gure 2.22).

As in the case of the \missing volume" discussed in section 2.3.4, we address this problem

by assuming that the pressure and volume velocity are equal at the boundaries. This

\mismatched volume problem" also explains why increasing the number of sections does
11The radius versus axial distance data is given in table I in [8].
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Figure 2.20: Piecewise modelling of the exponential horn. Left: piecewise modelling error as a
function of the number of sections. Right: re
ected power.
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function of number of sections. Right: re
ected power.
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Figure 2.22: Piecewise conical modelling of a horn that is terminated by an in�nite duct. The
volume V is doubly de�ned.

not improve the accuracy of the piecewise conical model: shortening the section at the end

corresponds to increasing the mismatch at the junction with the in�nite duct. One might

be able to reduce the error due to the volume mismatch problem (that in fact occurs at

each junction) by de�ning a \scattering region" in which the wavefront shape smoothly

evolves from one spherical shape to another when travelling through the junction. This

approach was taken by Berners [27], who has shown that the scattering region may be

modelled with a short 
aring section in which wave propagation is governed by Webster's

equation, which is equivalent to the Schr�odinger equation for one-dimensional scattering,

as used in quantum mechanics; within the analogy between acoustics and quantum me-

chanics, a parabolic 
are may in fact corresponds to a \square acoustic potential barrier".

However, given the relatively high computational load of a time-domain implementation

of such a junction model, this approach is not further investigated in the present study.

2.4 Conclusions

In this chapter we have discussed linearised models of tubular resonators. In section 2.1,

the basic principles of acoustic wave motion were brie
y reviewed. Of particular interest

to the present study are (1) the concept of the linearised wave equation (on which we will

base eÆcient discrete-time formulations of wave propagation in elemental bore shapes)

and (2) the concept of lumped acoustic elements (on which we will base eÆcient discrete-

time models of small acoustic units). In section 2.2, one-dimensional formulations of

wave propagation in cylindrical and conical bore sections were reviewed. In addition, we

have discussed how these formulations can be adapted when boundary e�ects (such as

viscothermal losses and open-end radiation) are taken into account. Finally in section 2.3,

one-dimensional modelling of acoustical waveguides with varying cross-section by means

of piecewise modelling techniques was discussed. Piecewise modelling with cylindrical
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and conical sections has been investigated by means of waveguide matrices, which are

closely related to the more conventional transmission-line matrices. We have seen that

in the case of modelling a horn with moderate 
are, the piecewise conical model forms a

reasonable approximation to the multi-modal solution. For the case of the strongly 
ared

trombone bell, increasing the number of conical sections does not improve the accuracy,

which is mainly due to the large wavefront area mismatch at the boundary. The piecewise

cylindrical model performs poorly for both cases.
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Chapter 3

Discrete-Time Modelling

A physical model of a wind instrument simulates sustained excitation of the resonances

of the instrument air column. Hence a physical model generally consists of a driving

mechanism (that represents the reed or lip excitation) and a resonator (that represents

the air column vibrations), and simulates the interaction between them (see �gure 3.1).

Due to the non-linear character of the driving mechanism, physical models are usually

computed in the time-domain. For time-domain simulation on a digital computer system,

discrete-time modelling techniques are required. Discrete-time modelling of the driving

mechanism is usually done by numerically solving a set of non-linear equations that relate

pressure to 
ow at the mouthpiece end of the air column.

In this chapter, techniques for discrete-time modelling of the resonator are discussed.

As in chapter 2, we assume linear behaviour, which facilitates the computations in two

ways. Firstly, we may move freely between frequency-domain and time-domain, and sec-

ondly, the resonator is fully characterised by its time-domain response.

The most elementary approach for modelling the resonator is by means of convolution

with the air column impulse response, which is discussed in section 3.1. The next two

sections are introductions to the two major discrete-time modelling techniques employed

in this study. In section 3.2, the basic concepts of digital waveguide modelling techniques

are explained, and in section 3.3, wave digital �lter techniques are discussed. These are

closely related techniques, which can easily be applied in combination. The combined

driving
mechanism resonator

Figure 3.1: Modelling the interaction between the driving mechanism and the resonator.

49



50 CHAPTER 3. DISCRETE-TIME MODELLING

Impulse Response Description Fourier Transform

Green's function g(t) pressure response to a vol-
ume 
ow input impulse,
with echoic input-end.

impedance Z(!) = P=U

re
ection function r(t) pressure wave response to
a pressure wave input
impulse, with anechoic
input-end.

re
ectance R(!) = P�=P+

Table 3.1: De�nition of impulse response types.

approach (referred to here as \wave digital modelling") is outlined in section 3.4, and

forms the fundamental modelling framework for various subsequent chapters.

A general feature of discrete-time modelling is that the model variables are computed

only at discrete-time instants t = nT , where n is integer, T = 1=fs is the sample period

and fs is the sample rate. For example, the variable x(t) is represented in the discrete

time-domain as:

x(t) � x(nT ) (3.1)

For convenience, the sample period T is usually suppressed in the notation, thus x(n)

denotes the variable x at time t = nT .

3.1 Convolution Methods

In this section, modelling of the resonator using convolution is discussed. Convolution

means computation of the system response to a certain input signal by means of �ltering

with the system impulse response. The impulse response of an acoustic system can be

de�ned in more than one way. The two main types of impulse responses and their Fourier

transforms are de�ned in table 3.1. Green's function is computed using an echoic input-

end, which means that a wave travelling towards the entry is fully re
ected at the entry

(without change of sign), i.e. the re
ectance at the entry is 1 at all frequencies. On

the other hand, the re
ection function is computed using an anechoic input-end, i.e. the

re
ectance at the entry is zero at all frequencies. The re
ectance R(!) is sometimes called

the \re
ection coeÆcient". This naming is based on the idea that in the frequency-domain,

�ltering corresponds to multiplication. However, the use of the term \coeÆcient" suggests

that R(!) is a constant, whereas it really is a function of frequency. Therefore we simply

refer to R(!) as the \re
ectance". In this study, the input impedance at the entry is

denoted with Zin(!), and the re
ectance at the entry is denoted with Rf(!). The inverse

Fourier transforms are denoted with gin(t) and rf (t), respectively
1.

1In the present study, variables are generally denoted with lower case in the time-domain and the
corresponding upper case in the frequency-domain. However, in the case of impedance, the lower case z is
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Figure 3.2: Feedback structure of a physical model using Green's function.

3.1.1 Using Green's Function

Assuming linear wave propagation in the bore, the resonator is fully characterised by its

input impedance Zin(!) [22, 52]:

P (!) = Zin(!) � U(!): (3.2)

Multiplication in the frequency-domain corresponds to convolution in the time-domain, so

the time-domain equation is written:

p(t) =

+1Z
�1

gin(�) � u(t � �)d� = gin(t) � u(t); (3.3)

where p(t) and u(t) are the inverse Fourier transforms of P (!) and U(!), respectively,

and where the operator \�" denotes convolution. Green's function is by de�nition a causal

response (gin(t) is zero for t < 0), thus (3.3) can be simpli�ed to:

p(t) =

1Z
0

gin(�) � u(t� �)d� = gin(t) � u(t): (3.4)

For simplicity, we de�ne the other part of the physical model (the driving mechanism) as

a non-linear mapping2 F :
u(t) = F fp(t)g : (3.5)

Equations (3.4) and (3.5) form the most basic possible feedback structure for physical

modelling of a wind instrument. From inspection of the signal 
ow graph (�gure 3.2) it

becomes obvious that this structure forms an incomputable loop: p has to be known at

time t in order to compute u at time t via (3.5), and similarly, u has to be known at time

already reserved for denoting the z-transform variable. Hence we denote the inverse Fourier transform of
Z(!) with g(t).

2In wind instrument modelling, the driving mechanism is usually not represented with such a simple
instantaneous mapping (see, for example, chapter 10). However, this is not relevant to the discussion
on how to model the resonator: the methods for modelling the resonator are also applicable when the
excitation model is more complex.
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t to compute p(t) through (3.4). Schumacher [124] addresses this problem by rewriting

Green's function as:

gin(t) = Z0 Æ(t) + ĝin(t); (3.6)

where Z0 is the characteristic impedance at the bore entry, Æ(t) is the Dirac delta-function

and ĝin(t) is the \residual" or \remainder" Green's function:

ĝin(t) =

(
0; t = 0

gin(t); t > 0
: (3.7)

The equation for modelling the resonator (3.4) can now be written:

p(t) = Z0u(t) +

1Z
0

ĝin(�) � u(t� �)d� = Z0u(t) + ĝin(t) � u(t): (3.8)

The discrete-time version of (3.8) is obtained by sampling ĝin(t), p(t) and u(t) at time

instants t = nT for n = 1; 2; 3 : : :, and replacing convolution with discrete convolution:

p(n) = Z0u(n) +
NX

m=0

(ĝin(m) � u(n�m)) = Z0u(n) + ĝin(n) � u(n): (3.9)

In this discrete representation, the convolution length N is �nite, and the remainder

Green's function ĝin(n) is e�ectively truncated at n = N . Therefore N should be taken

such that ĝin(n) has decayed towards zero before t = NT . Since it is known that ĝin(0) = 0

and that ĝin ((N + 1)T ) is e�ectively zero, (3.9) can be rewritten:

p(n) = Z0u(n) +
N+1X
m=1

[ĝin(m) � u(n �m)]

= Z0u(n) +
NX

m=0

[ĝin(m+ 1) � u(n �m� 1)]

= Z0u(n) + �gin(n� 1) � u(n� 1); (3.10)

where �gin(m) � ĝin(m + 1) is the remainder Green's function shifted by one delay. The

convolution term in (3.10) now only depends on the history of u, and not on the current

value u(n). In other words, the convolution term represents the pressure history of the

system:

phist(n) = �gin(n� 1) � u(n� 1): (3.11)
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After combining (3.5) with (3.10) and (3.11), the feedback structure can be expressed:

u(n) = F f(Z0 � u(n) + phist(n))g : (3.12)

This non-linear equation can be solved numerically for u(n), and the corresponding pres-

sure p(n) can then be obtained through (3.10). Next, the volume velocity at the following

time instant u(n + 1) can be computed, and so on. Thus the feedback loop is made

computable in this way.

3.1.2 Using the Re
ection Function

In general, the re
ection function decays quicker than Green's function. This is because

the re
ection function is de�ned under the assumption that the input-end of the air column

is anechoic, whereas Green's function is de�ned under the assumption that the input-end

is echoic. Thus Green's function exhibits a much higher level of multiple re
ections than

the re
ection function. Hence a time-domain simulation of the resonator is generally

implemented more eÆciently using the re
ection function. Rewriting the resonator model

in terms of propagating waves gives:

p+(t) = Z0u(t) + p�(t); (3.13a)

p�(t) = rf (t) � p+(t); (3.13b)

p(t) = p+(t) + p�(t): (3.13c)

This is the classic re
ection function convolution model as originally described in [95].

Figure 3.3a shows the corresponding signal 
ow graph. In many applications, the re
ection

function model is formulated in a slightly di�erent way, by using phist(t) as a variable:

p(t) = Z0u(t) + phist(t); (3.14)

where the pressure history is computed in terms of propagating waves [54] (signal 
ow

graph is depicted in �gure 3.3b):

phist(t) = 2p�(t) = rf(t) � 2p+(t); (3.15)

or in terms of pressure and volume velocity [124, 77] (signal 
ow graph depicted in �g-

ure 3.3c)

phist(t) = rf(t) � [Z0u(t) + p(t)] : (3.16)

These are variations of the same (re
ection function) model. For brevity, we will only

consider the re
ection function model formulated with equation (3.14), using the pressure
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Figure 3.3: Feedback structure of a physical model using the re
ection function. Three ways of
interfacing the resonator to the excitation are possible: (a) without using the pressure history, (b)
using the pressure history formulation with propagating waves, and (c) using the pressure history
formulation for pressure and volume velocity.

history formulated with equation (3.16).

The feedback structure corresponding to using Green's function (�gure 3.2) is made

computable by assuming that Green's function may be written as the scaled delta-function

Z0Æ(t) plus the \remainder" Green's function ĝin(t). This implies that gin(0) = Z0. It can

be easily shown that this is equivalent to assuming a re
ection function rf(t) for which

rf (0) = 0. As seen in section 2.2, the relation between the input impedance and the

re
ectance is:

Zin(!) = Z0

�
1 +Rf (!)

1�Rf (!)

�
: (3.17)

The corresponding time-domain relation between Green's function and the re
ection func-

tion is:

gin(t) = Z0 � [Æ(t) + rf(t)] ��1 [Æ(t)� rf(t)] ; (3.18)

where the operator ��1 denotes deconvolution. From inspection of (3.18) it becomes clear

that gin(0) = Z0 only if rf(0) = 0. By taking this assumption into account in the re
ection
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function method, the pressure history can be computed in discrete-time as:

phist(n) =
N+1X
m=0

rf (m) [Z0u(n �m) + p(n�m)]

=
N+1X
m=1

rf (m)[Z0u(n�m) + p(n�m)]

=
NX

m=0

rf(m+ 1)[Z0u(n�m� 1) + p(n�m� 1)]

= �rf(n� 1) � [Z0u(n� 1) + p(n� 1)] ; (3.19)

where �rf(m) � rf(m+ 1) is the time-shifted version of the re
ection function. The model

can then be numerically solved for u(n) by combining (3.19) with the discrete-time versions

of (3.5) and (3.14).

Note that both the Green's function method and the re
ection function method (the

last one being the currently most widely used method in the context of wind instrument

modelling) are based on the assumption that rf (0) = 0. Translated into physical terms,

this assumption means that the instrument bore has a perfectly cylindrical entry at the

mouthpiece end. Unfortunately, this is not always the case for real wind instruments. For

example, the mouthpiece of a brass instrument usually has a mouthcup with a curved

pro�le. Such an \angled" start of the air column pro�le causes an immediate re
ection at

t = 0 back to the reed or lips. In many cases, the angle of conicity is rather small, thus the

\instantaneous re
ection" at t = 0 can be expected to be small. Nevertheless it would be

more accurate to use the full re
ection function that includes the instantaneous re
ection.

A method in which the full re
ection function is applied is presented in the next section.

3.1.3 The Full Re
ection Function Method

The full re
ection function method is based on the principle of separating out all contri-

butions at t = nT . The resulting equation can then be rewritten such that p(n) becomes

explicit, and the complete system can be solved for u(n). In discrete-time, the re
ection

function model is expressed:

p(n) = Z0u(n) +
NX

m=0

rf (m) [Z0u(n�m) + p(n�m)] : (3.20)
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Separating the contributions at t = nT from the convolution term (i.e., extracting all

terms with m = 0) gives:

p(n) = Z0u(n) + rf(0) � [Z0u(n) + p(n)] +
NX

m=1

rf (m) [Z0u(n�m) + p(n�m)]

= Z0u(n) + rf(0) � [Z0u(n) + p(n)] + �rf(n� 1) � [Z0u(n� 1) + p(n� 1)]

= Z0u(n) + rf(0) � [Z0u(n) + p(n)] + phist(n): (3.21)

Solving for p(n) gives:

p(n) =
[1 + rf(0)]Z0u(n) + phist(n)

1� rf(0)
: (3.22)

Combining (3.5) with (3.22) gives the �nal equation from which u(n) can be solved:

u(n) = F f�1u(n) + �2g ; (3.23)

where

�1 = Z0

�
1 + rf (0)

1� rf (0)
�
; (3.24a)

�2 =
phist(n)

1� rf (0) : (3.24b)

The convolution approach provides a rigorous method for modelling the resonator,

but as discussed in section 1.2, it has various limitations when applied to musical sound

synthesis. In the next two sections of this chapter, we discuss two types of discrete-time

modelling techniques that are based on treating the air column as a series of modules.

3.2 Digital Waveguide Modelling Techniques

A digital waveguide (DWG)model is a discrete-time model of a distributed acoustic system

[132], based on the travelling-wave solution of the wave equation. The main di�erence

when compared with more conventional numerical simulation techniques, such as �nite

element methods and modal analysis, is that a DWG model explicitly simulates travelling

waves rather than localised physical quantities. Because DWG modelling techniques are

based on a modular approach and allow for eÆcient computer implementations, they are

particularly suitable in the context of musical sound synthesis. The development of DWG

techniques was initiated more than a decade ago at CCRMA3 by Prof. Julius Smith

[129, 130, 131]. Since then, DWG modelling techniques have been further developed
3The Stanford University Center for Computer Research in Music and Acoustics, California (USA).
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for application to various musical instruments, for example, string instruments [70, 149,

154, 145], wind instruments [63, 38, 151, 148, 119, 27], vocal tract models [39, 147] and

percussive instruments [153, 53]. DWG modelling techniques have also been employed for

simulation of room acoustics [128, 134, 114, 113, 146]. For elaborate overviews of physical

modelling using DWG techniques we refer to [131, 132]. This section contains a summary

of the basic concepts of DWG modelling plus a short review of some speci�c issues that

are related to DWG modelling of tubular acoustic systems.

3.2.1 Modelling One-dimensional Wave Propagation

The general one-dimensional wave equation that describes lossless wave motion in uniform

resonators (such as ideal strings and pipes) is:

@2y

@x2
=

1

c2
@2y

@t2
; (3.25)

where y is an acoustical variable (e.g., string displacement or acoustic pressure), t is time,

and x is the position along the resonator in the modelling dimension (e.g., position along

string or pipe). The general time-domain solution of (3.25) was published by d'Alembert

in 1747 [42]:

y(x; t) = f1(t� x=c) + f2(t+ x=c); (3.26)

where f1 and f2 are arbitrary waveforms that travel in positive and negative x-direction,

respectively, with wave speed c. The wave equation solution is a simple superposition of

travelling waves, and physical systems that are governed by the wave equation are therefore

usually referred to as waveguides. In order to simulate a waveguide in the discrete-time

domain, it is necessary to sample the travelling waves. Given a sample rate fs and a

sample period T = 1=fs, the sampling is formally carried out by the change of variables

[130]:

x! xm = m�x; (3.27a)

t! tn = nT; (3.27b)

where �x = cT is the spatial sampling interval. For lossless sound propagation in air,

the wave speed is about 343m/s. Using an audio sampling rate fs = 44:1kHz, the sam-

pling interval then becomes about 7.8 mm. Substituting the change of variables into the

travelling-wave solution gives:

y(tn; xm) = f1 [(n�m)T ] + f2 [(n+m)T ] : (3.28)
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Figure 3.4: Digital simulation of a lossless waveguide using a bi-directional delay-line. The z�1

blocks indicate a single delay. The acoustic variable at time n and position m is obtained by
summing the two components y+(n;m) and y�(n;m).

This expression can be simpli�ed by suppressing T and de�ning:

y+(n;m) = f1 [(n�m)T ] ; (3.29a)

y�(n;m) = f2 [(n+m)T ] ; (3.29b)

where the superscripts + and � indicate wave travel in positive and negative direction,

respectively. The �nal expression that describes the digital waveguide is:

y(n;m) = y+(n;m) + y�(n;m): (3.30)

The basic structure of the digital waveguide is depicted in �gure 3.4. The upper delay-line

simulates the forward-travelling wave y+, and the lower delay-line simulates the backward-

travelling wave y�. The values of y+ and y� at consecutive time instants are stored in

the upper and lower rail of the bi-directional delay-line structure, respectively.

3.2.2 Basic Properties of DWG Models

The basic properties of DWG models have been extensively studied and described in prior

work [130, 131, 132, 135]. The DWG model features that are relevant to this study are

summarised below.

Propagation Losses

In a one-dimensional resonator, the propagation losses are distributed over the length of

the resonator. In other words, the amount of energy dissipation of a wave depends on

the distance it has travelled. Such losses may be lumped, and the resulting expression

can be approximated with a digital �lter (i.e., a loss-�lter). In a DWG model, wave
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Figure 3.5: Digital waveguide implementation of a string, taking into account the propagation
losses. Each \�1" block indicates a rigid termination. A z�M unit represents a delay-line of M
samples. The �lters H1(z) and H2(z) model the lumped propagation losses along the string lengths
L1 = Mct and L2 = Nct, respectively. The string excitation (plucking or bowing) is modelled
with a special excitation-junction at a position x = Mct.

propagation is represented by interconnected digital waveguide sections. The propagation

losses can thus be taken into account by �ltering the propagating wave at points in the

DWG structure where it exits a digital waveguide section. This idea is demonstrated in

the DWG implementation of a lossy string as depicted in �gure 3.5. The string is rigidly

terminated at both ends, and plucked or bowed at position x =M cT .

Linearity and Commutativity

In general, the modelling units of a DWG model are linear and commutative. These

properties allow us to re-arrange the DWG string model into a more eÆcient structure.

For example, all the units in the delay-loop on the right side of the excitation junction in

�gure 3.5 are linear and commutative. Hence the re
ectance of this delay-loop, as seen

from the excitation junction, may be re-formulated as follows:

Rdl(z) = z�N �H2(z) � (�1) � z�N �H2(z)

= (�1) � z�2N � [H2(z)]
2 : (3.31)

The delay-loop on the left side of the excitation junction can be re-arranged in the same

manner. In other words, we may change the order of the linear elements of the DWG struc-

ture. We will refer to this as the commutativity principle. Assuming that the excitation-

junction in �gure 3.5 models non-linear interaction with the string, the structure can not

be re-arranged such that the elements on the right side are combined with the elements

on the left side. Hence the re-arranged DWG model now exhibits two delay loops that

each contain a single delay-line of twice the original length and loss-�lters with squared

transfer-function (see �gure 3.6).
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Figure 3.6: Digital waveguide implementation of a string with commuted losses and delays. Each
\�1" block indicates a rigid termination. A z�2M unit represents a delay-line of 2M samples. The
�lter-blocks (H1(z))

2 and (H2(z))
2 model the lumped propagation losses along the string lengths

2L1 = 2Mct and 2L2 = 2Nct, respectively.

Fractional Delays

The length of the string in �gure 3.6 is restricted to be a multiple of the spatial sample

length cT . In order to enable continuous adjustment of the string length and excitation

point, fractional delay �lters are applied [131, 148]. Fractional delay (FD) �lters simulate

the propagation of waves over a fraction of the spatial sampling length, and can be placed

within the delay loops of a DWG model.

Band-Limited Signals

In a digital waveguide model, the travelling waves are sampled in space and time, therefore

the input signals must be band-limited according to the sampling theorem [131]. Hence

signal variables that contain frequencies higher than half the sample rate su�er from the

e�ects of spectral aliasing.

Passivity

DWG models simulate passive physical systems. One condition for a DWG model to be

stable and passive is that the gains of its delay-loops must not exceed unity. A possible

strategy for upholding this condition is to design the digital �lters that are to be included

in a DWG model such that their magnitude response is equal to or less than unity at all

frequencies [148].

Computational EÆciency

In a DWG model, delay-lines are used to implement lossless wave propagation. A single

delay-line only requires one fetch, store and pointer update per sampling period, inde-

pendent of its delay length N . Therefore, in the case of modelling an Nth order lossless
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waveguide, the DWGmodelling approach is extremely economic in comparison with other

discrete-time modelling approaches (such as �nite-di�erence, �nite-element, or modal anal-

ysis methods), which require a number of the order N of such computations [132]. Losses,

dispersion or fractional delays can generally be represented with a few lower-order digital

�lters, so that the total computational cost of a DWG model can be kept very low.

3.2.3 Modelling Tubular Acoustic Systems

This section summarises how DWG techniques can be applied to the simulation of wave

propagation in elemental bore shapes, such as cylindrical and conical sections.

Cylindrical Bores

In section 2.2.1 we have seen that linear wave propagation in a cylindrical bore can be de-

scribed by the one-dimensional wave equation in cylindrical co-ordinates (equation (2.31)).

As explained in section 3.2.1, wave propagation that is governed by this equation can be

implemented using a simple bi-directional delay-line structure. Viscothermal losses and

fractional delays can be simulated as described in the last section. A detailed discussion of

the exact design of the digital loss-�lters and fractional delay �lters applicable to modelling

acoustic bores is given in chapter 4.

Conical Bores

Wave propagation in conical bores was described in section 2.2.2. Just as for the cylindrical

case, wave propagation in conical bores may be described with a one-dimensional wave

equation, though in this case in spherical co-ordinates (equation (2.44)). According to

this wave equation, waves propagate smoothly (without back-scattering) from one end to

the other, therefore wave propagation in conical bores can also be implemented using a

digital waveguide. However, there are some extra features to be taken into account, such

as the spreading of the wavefront as it travels away from the cone apex. These issues are

discussed in chapter 4.

Tubular Junctions

As seen in section 2.3, wave scattering occurs at a junction of tubular sections of di�erent

diameter or di�erent taper. In a DWGmodel, wave scattering at a tubular interconnection

can be modelled using a scattering junction, which is a unit that computes the re
ectance

and transmittance of incident waves. For example, if we connect two cylindrical bore

sections of di�erent diameter (see �gure 3.7a) or di�erent diameter and di�erent taper

(see �gure 3.7b), we need to work out how much of the incident wave energy is re
ected
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Figure 3.7: Tubular junctions. Junction of two cylindrical bore sections (a), of two conical bore
sections (b), and of three cylindrical bore sections (c).

backward, and how much is transmitted into the other tube. Modelling the wave scattering

at junctions of two tubular sections is further discussed in detail in chapter 4 and chapter 6.

In some cases, a wind instrument bore contains an interconnection of three tubular

sections (see �gure 3.7c). For example, a woodwind tonehole may be considered as a short

tubular section that is interconnected with two other tubes, namely the part of the main

bore before and after the tonehole. A three-port scattering junction is required to model

the wave scattering at such a junction. This subject is further discussed in chapter 5 and

appendix E.

3.2.4 Relation to Conventional Ladder and Lattice Filters

DWG models were designed to simulate acoustical systems. However, DWG models may

be also interpreted as digital �lter structures, and are closely related to several existing

signal processing techniques. It is worthwhile establishing this relation, since it allows us

to apply a variety of techniques developed in the �eld of signal processing to a discrete-time

acoustical model.

Waveguide Filters

The digital �lter structure that results from modelling a lossless, distributed acoustic

model as a network of intersecting uniform waveguide sections is referred to as a waveguide

digital �lter or waveguide �lter (WGF) [130]. Uniform waveguide sections are sections

with constant characteristic impedance. For example, when modelling an acoustic bore,

this means the bore is divided into cylindrical sections, and implemented in the discrete

time-domain using a chain of bi-directional delay-lines connected via cylindrical scattering

junctions. Hence a DWG model of the piecewise cylindrical system discussed in chapter 2

(see �gure 2.12)) can be regarded as a WGF.
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Figure 3.8: Structure of the waveguide �lter with optimal spatial resolution. Each cylindrical
section has a round-trip 2cT . The scattering at the junction between section k and section k + 1
is modelled with the cylindrical scattering junction Jk;k+1.

When modelling an acoustic bore using a WGF, the optimal spatial resolution is ob-

tained by using a section-length that corresponds to a round-trip time (which is the total

time for propagating forward and backward through a cylindrical section) of 2cT . Fig-

ure 3.8 depicts the structure of a WGF with optimal spatial resolution.

Kelly-Lochbaum Model

Cylindrical scattering junctions are equivalent to the Kelly-Lochbaum scattering junctions

that are used for modelling the vocal tract in speech synthesis applications [78]. The

Kelly-Lochbaum (KL) �lter model (see �gure 3.9), is very similar to the WGF model

with optimal spatial resolution, where the main di�erence is that the KL structure only

contains delays at its \lower rail". In [130] it is shown that the KL structure is a \reduced

equivalent form" of a WGF structure that uses a sample rate that is twice is high. In

other words, the spatial resolution of a KL model computed at sample rate fs is twice

as high as the spatial resolution of a WGF model computed at the same sample rate.

Furthermore, the Kelly-Lochbaum model is mathematically equivalent to various other

ladder and lattice �lter structures [92, 130].

3.2.5 Relation to Inverse Scattering Techniques

One of the lattice �lter structures that is mathematically equivalent to the Kelly-Lochbaum

model is the linear predictive coding (LPC) model, as used in speech synthesis applications

[92]. From a digital signal processing point of view, this is a particularly interesting

feature, since the �lter coeÆcients for this structure can be directly derived from an

acoustic signal, using LPC analysis. This raises the possibility of using LPC analysis

techniques for derivation of the parameters of the Kelly-Lochbaum Model. The Kelly-

Lochbaum model may be interpreted as an acoustical bore model, thus we may consider
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Figure 3.9: Structure of the Kelly-Lochbaummodel. Each cylindrical section has a round-trip cT .
The scattering at the junction between section k and section k+1 is modelled with the cylindrical
scattering junction Jk;k+1.

this application as a form of bore reconstruction. Such an inverse-modelling approach has

previously been applied in speech synthesis, with the aim of reconstructing the shape of

the vocal tract [92]. Interestingly, a similar approach has been applied in the context of

musical wind instrument modelling. By �rst measuring the impulse response (re
ection

function) of a certain tubular object, and then applying an inverse-modelling algorithm,

the internal bore pro�le of the instrument can be reconstructed. Various techniques for

bore reconstruction have been developed, usually based on the piecewise cylindrical model

(see, e.g., [163, 10]). The piecewise cylindrical model is often referred to as a\scattering

model", hence the inverse method is usually referred to as \inverse-scattering". Such

an inverse-scattering technique is applied in chapter 7, in order to empirically derive the

re
ectance of a 
ared horn. For a detailed description of inverse-scattering techniques and

the experimental techniques for obtaining the bore impulse response, we refer to Sharp

[126].

3.3 Wave Digital Filter Techniques

Wave digital �lter (WDF) techniques are used for digital simulation of analogue networks

[51, 87]. The resulting digital networks are called wave digital �lters. Many theoretical

acoustic models are developed using the strong analogy between electric and acoustic

systems, and can be expressed in terms of electric components, such as inductance (L),

capacitance (C) and resistance (R). A good example is the equivalent network of the

Helmholtz resonator, as discussed in section 2.1.3. Hence WDF techniques can be applied

to discretise such lumped elements in an acoustic model. WDFs are similar to DWG

models in the sense that they both simulate continuous-time models in the discrete-time
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domain using wave variables4. As a consequence, the two modelling approaches easily

combine. This section starts with a short review of aspects of WDF theory that are

relevant to this study. Next, the application to acoustical systems is discussed.

3.3.1 Wave Digital Filter Theory

Detailed explanations of WDF theory can be found in [51, 87]. The basic procedure for

derivation of a WDF consists of two steps:

(1) transformation from electrical circuit variables (voltage, current) to wave variables

(voltage waves or current waves).

(2) discretisation of frequency-dependent network components via the bilinear trans-

form.

There are two basic approaches for WDF derivation. In the one-port approach, each

network component is discretised individually, and multi-port systems are connected with

each other via adaptors. In the two-port approach, the network is divided into two-port

(and one-port) units, which are then discretised individually (see �gure 3.10). Here we

will review WDF theory mainly along the lines of the two-port modelling approach as

described in [87].

A two-port analogue network can be expressed in terms of its ABCD-matrix. For

example, the parallel inductance network in �gure 3.11 is described by the matrix equation:

"
V1

I1

#
=

"
1 sL

0 1

#"
V2

I2

#
; (3.32)

where s = j! is the Laplace variable. The �rst step in the derivation of the WDF model is

to transform the instantaneous variables (voltage and current) into wave variables. This

is accomplished here by the decomposition into the voltage waves:

V =
V + + V �

2
; (3.33a)

I =
V + � V �

2R
; (3.33b)

where V + and V � are voltage waves, and R is a constant with the dimensions of resistance

and is called the port-resistance [87]. In principle, the port-resistance at any point in the
4We note that WDF techniques are primarily used for simulation of lumped element systems, in which

case the wave variables do not correspond to actual travelling waves. That is, in the case of modelling
a distributed system the decomposition of the acoustical variables into wave variables has a clear phys-
ical meaning, whereas in the case of modelling a lumped system it is merely a matter of mathematical
representation.
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Figure 3.11: A two-port series inductance network.

network may be chosen freely. Let us note however that one of the main features of WDF

modelling is that this freedom has to be used to avoid delay-free loops in the �nal digital

�lter structure. If we apply the wave decomposition in �gure 3.33 to the acoustic variables

on both sides of the relationship in equation (3.32), we get

"
V +
1 + V �1
V +
1 � V �1

#
=

"
1 sL

R2

0 R1
R2

#"
V +
2 + V +

2

V +
2 � V �2

#
; (3.34)

where R1 and R2 are the left-hand side and the right-hand side port-resistance, respec-

tively. These equations may be re-arranged such that the relationships between the scat-

tering waves at either side of the system are obtained:

"
V +
1

V �1

#
=

"
1 + sL

R2
+ R1

R2
1� sL

R2
� R1

R2

1 + sL
R2
� R1

R2
1� sL

R2
+ R1

R2

#"
V +
2

V �2

#
: (3.35)
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The scattering matrix5, that relates the incident waves V +
1 ; V

�

2 to the re
ected waves

V +
2 ; V

�

1 , is expressed:

"
V +
2

V �1

#
=

"
T+(s) R+(s)

R�(s) T�(s)

#"
V +
1

V �2

#
; (3.36)

with the transmittances and re
ectances:

T+(s) =
2R2

R2 + sL +R1
; (3.37a)

R+(s) =
�R2 + sL+R1

R2 + sL+ R1
; (3.37b)

R�(s) =
R2 + sL �R1

R2 + sL +R1
; (3.37c)

T�(s) =
2R1

R2 + sL +R1
: (3.37d)

Since we have

T+(s) = 1� R+(s); (3.38a)

T�(s) = 1� R�(s); (3.38b)

the scattering relations can be written conveniently as:

V +
2 = V +

1 +R+(s)
�
V �2 � V +

1

�
; (3.39a)

V �1 = V �2 �R�(s) �V �2 � V +
1

�
: (3.39b)

What remains is to formulate the re
ectances R+(s) and R�(s) in digital form. Discreti-

sation of frequency-dependent units in WDF modelling is done via the bilinear transform

(BT) [51, 87]. The BT is carried out by means of a mapping of the Laplace variable s to

the z-transform variable z:

s = �
1� z�1

1 + z�1
; (3.40)

with the bilinear operator � = 2=T . Applying the BT to the re
ection coeÆcients gives

the �rst-order IIR �lters:

R+(z) =
�1 + �2z

�1

1 + �3z�1
; (3.41a)

R�(z) = ��2 + �1z
�1

1 + �3z�1
; (3.41b)

5In [87], the scattering matrix is de�ned di�erently. Nevertheless this results in an equivalent WDF
structure.
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type connected to each other. The structure is only computable if the loop (indicated with the
grey arrow) is not delay-free. This means that either R+(z) or R�(z) has to be non-immediate.

where

�1 =
R1 �R2 + �L

R1 +R2 + �L
; (3.42a)

�2 =
R1 �R2 � �L

R1 +R2 + �L
; (3.42b)

�3 =
R1 +R2 � �L

R1 +R2 + �L
: (3.42c)

One of the key aspects of WDF techniques is to ensure realisability. In principle, the WDF

model of the series inductance network can be implemented as an isolated system, using

equations (3.39) and (3.41). However, if more components are added to the system, special

care must be taken to ensure that no delay-free loops result. For example, if the network

is connected to another two-port series inductance network (see �gure 3.12), the resulting

WDF model of the total network exhibits a loop that is only computable if it contains at

least one delay. This means that at least one of the re
ectances R+(z); R�(z) must be

non-immediate. By non-immediacy of a re
ectance R(!) we mean that its inverse Fourier

transform r(t) has a zero instantaneous re
ection (i.e., r(0) = 0)). In order to achieve

this, either �1 or �2 must be set to zero, which corresponds to imposing non-immediacy

on respectively the left and the right side of an individual two-port WDF unit. This

choice (left or right non-immediacy) is a general feature of a two-port WDF derivation

[87]. However, note that in order to be able to connect a series of two-port WDF units

freely, they must all be designed according to the same choice for non-immediacy. In this

example, we choose to have non-immediacy on the left side6. In the case of the series

inductance network, this means that �2 has to be set to zero. The port-resistance on the
6Units with \left-side non-immediacy" will be indicated with WD-l, whereas units with \right-side

non-immediacy" are indicated with WD-r.
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left side then has to be:

R1 = R2 + �L: (3.43)

After substitution of (3.43) into (3.41), the re
ectances R+(z); R�(z) of the WD-l series

inductance can be written:

R+(z) =
�1

1 + �3z�1
; (3.44a)

R�(z) =
��1z�1
1 + �3z�1

= �z�1R+(z); (3.44b)

with the coeÆcients

�3 =
R2

R2 + �L
; (3.45a)

�1 =
�L

R2 + �L
= 1� �3: (3.45b)

If we de�ne the intermediate signal variables

W1 =
�
V +
2 � V �1

�
; (3.46a)

W2 =

�
1� �3

1 + �3z�1

�
W1; (3.46b)

the �nal WDF formulae are found by combining (3.39), (3.44), (3.45) and (3.46):

W1 =
�
V �2 � V +

1

�
; (3.47a)

W2 = W1 � �3
�
W1 +W2z

�1
�
; (3.47b)

V +
2 = V +

1 +W2; (3.47c)

V �1 = V �2 +W2: (3.47d)

The signal 
ow of the two-port WD-l is depicted in �gure 3.13. Note that just one delay

and one multiplication is required in order to simulate the series inductance network.

3.3.2 Application to Acoustical Systems

In the analogy between electrical and acoustical systems, voltage is considered analogous

to pressure, and current is considerd analogous to volume velocity [84, 52]. Hence we can

apply WDF techniques to lumped acoustical systems by simply replacing the electrical

variables with their corresponding acoustical variables. In the case of a distributed acoustic

element, the wave variables correspond to pressure waves travelling in a certain medium.

In that case the port-resistance equals the reference impedance (�c=S) that characterises

the medium (as in DWG modelling). In the lumped case however, the wave variables
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Figure 3.13: Wave digital �lter simulation of a series inductance network, derived using the
two-port approach, with non-immediacy on the left side. R1 and R2 are the port-resistances.

may only be understood to be travelling instantaneously. In other words, the waves

do not in fact travel over any distance, and the travelling wave formulation is purely a

matter of mathematical representation. The port-resistance may therefore, at least from an

acoustical point of view, be considered as arbitrary. As seen in section 3.3.1, this freedom

can be used to avoid delay-free loops in the �nal discrete-time modelling structure.

Suppose that we want to model a cylindrical pipe with a local volume expansion (see

�gure 3.14a). The equivalent network of this system consists of a uniform transmission-

line shunted by a parallel capacitor [84] (see �gure 3.14b). The acoustic compliance (the

acoustical analogue of capacitance) of the volume V is:

C =
V

�c2
: (3.48)

In discrete-time, the cylindrical pipe (the uniform line) is modelled with a bi-directional

delay-line (see �gure 3.14c), as described in section 3.2. The task is now to discretise

the volume section by deriving the WDF structure for simulation of the equivalent two-

port capacitor network. Since the two-port parallel capacitor is connected directly with

a uniform line (modelled as a DWG unit) on both sides, the port-resistances at these

connections should be set equal to the characteristic impedance Z0 of the pipe. The

digital waveguide sections have no immediate re
ection, so that no delay-free loops will

arise. In principle we can derive a WDF simulation of the volume expansion using the

two-port approach, in the same way as with the series inductance network in the last

section. However, in application to a parallel network, the one-port approach is more
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Figure 3.14: Two pipes connected via an acoustic volume (a), the equivalent electrical circuit (b),
and the discrete-time model (c).

practical. The derivation of this \wave digital volume" is done as follows. The connection

between the parallel capacitor and the rest of the network in �gure 3.14b is as a parallel

three-port. By drawing this part of the network in a slightly di�erent way (see �gure 3.15),

this notion becomes more clear. Kircho�'s laws apply to the three-port:

P1 = P2 = P3; (3.49a)

U1 = U2 + U3: (3.49b)

The �rst step in the WDF derivation is the transformation from localised acoustic variables

to wave variables. In order to ensure compatibility with DWG modelling, the travelling

wave decomposition7 is chosen as:

Pk = P+
k + P�k ; (3.50a)

Uk =
P+
k � P�k
R

; (3.50b)

for k = 1; 2; 3. The direction of the waves is as depicted in �gure 3.16. The scattering of
7This wave decomposition di�ers by a factor 2 from the decomposition in (3.33), but this factor does

not a�ect the WDF derivation.
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Figure 3.15: A three-port interconnection with a compliant load at one of its ports.

the wave variables at the three-port junction can be expressed through the matrix equation

(see appendix E):

2
64
P�1
P+
2

P+
3

3
75 =

2
64

G1�G2�G3
G1+G2+G3

2G2
G1+G2+G3

2G3
G1+G2+G3

2G1
G1+G2+G3

�G1+G2�Gc

G1+G2+G3
2G3

2G1
G1+G2+G3

2G2
G1+G2+G3

�G1�G2+G3
G1+G2+G3

3
75
2
64
P+
1

P�2
P�3

3
75 ; (3.51)

where Gk = 1=Rk is the local port-admittance. The port-admittance G3 of the compliance

may be freely chosen, and the other port-admittances G1 and G2 equal the characteristic

admittance Y0 = 1=Z0 of the pipe:

G1 = G2 = Y0: (3.52)

The second step in the WDF derivation is the discretisation of the frequency-dependent

component (the volume compliance). The impedance load of the compliance is Zcom(!) =

1=j!C. The corresponding wave re
ectance Rcom(!) is:

Rcom(!) =
P�3
P+
3

=
Zcom(!)�R3

Zcom(!) +R3
=
G3 � j!C

G3 + j!C
: (3.53)

Discretisation of (3.53) via the bilinear transform gives:

Rcom(z) =
G3 � �C

�
1�z�1

1+z�1

�
G3 + �C

�
1�z�1

1+z�1

� ; (3.54a)

=
�+ z�1

1 + �z�1
: (3.54b)

with the �lter coeÆcient

� =
G3 � �C
G3 + �C

: (3.55)
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ance load at one of its ports. The interconnection is modelled as a three-port junction, and the
compliance is represented by its wave re
ectance Rcom(z). The structure is only computable if G3

is chosen such that the capacitor loop is not delay-free.

Now in order to ensure that the compliance-loop in the WDF structure (see �gure 3.16)

is delay-free, we need to choose G3 such that the re
ectance Rcom(z) is non-immediate.

In other words, � has to be to zero, which is achieved by setting:

G3 = �C: (3.56)

The wave digital re
ectance then becomes:

Rcom(z) =
0 + z�1

1 + 0
= z�1: (3.57)

We note that the compliance-loop is thus modelled very eÆciently with a single delay.

The �nal equations of the wave digital volume are found by substituting the values for the

port-admittances (equations (3.52) and (3.56)) into the scattering matrix equation (3.51),

and combining with (3.57):

P�3 = P+
3 z

�1;

W = kj
�
P+
1 + P�2 � 2P�3

�
;

P�1 = P�2 +W; (3.58)

P+
2 = P+

1 +W;

P+
3 = P+

1 + P�2 � P�3 +W;

with the three-port junction coeÆcient:

kj =
��C

�C + 2Y0
: (3.59)
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Figure 3.17: Wave digital simulation structure of a volume expansion in a cylindrical pipe, derived
using the one-port approach.

The signal 
ow of the \wave digital volume" is depicted in �gure 3.17. Note that also in

this case only one multiplication is required.

3.4 The Combined Approach

The previous two sections of this chapter describe two di�erent techniques for discrete-

time modelling of acoustic systems. These two techniques both use wave variables, and can

therefore easily be combined in a discrete-time model. For example, van Duyne et al. [153]

take such a combined approach for digital simulation of force interaction between hammer

and string in a piano. In this section, a comparison between the two techniques is made,

starting from a comparison between waveguide �lters (WGFs) and wave digital �lters

(WDFs). The results of this comparison are then used to work towards a more speci�ed

de�nition of the techniques such that they are compatible when applied to acoustical

systems.

3.4.1 A Comparison between WDFs and WGFs

The theory of WGFs is described in detail in [130], and an overview of WDF theory can

be found in [51, 87]. The main similarities between WGFs and WDFs are:

� Both WGFs and WDFs are derived from physical systems using wave variables.

� Both WGFs and WDFs implement N -dimensional networks, where N can theoreti-

cally vary from 1 to any positive integer.



3.4. THE COMBINED APPROACH 75

� N -port interconnections are modelled with N -port junctions8.

� Both WGFs and WDFs are scattering-type �lters, for which �nite-precision artefacts

such as over
ow oscillations and limit cycles can be suppressed, and sensitivity to

quantisation errors can be minimised.

The main di�erences between WGFs and WDFs are:

� WGFs are derived from uniform transmission-lines, which in the analogy between

electrical networks and acoustical systems correspond to distributed model elements.

WDFs are derived from lumped circuit elements, which in the analogy between elec-

trical networks and acoustical systems correspond to lumped model elements.

� In the time-domain, the correspondence between a WGF and the lossless, distributed

physical model it implements is exact. The correspondence between a WDF and the

physical system it implements is not exact, because frequency-dependent units are

discretised using the bilinear transform 9.

� WGFs are formulated using the wave decomposition P = (P+ + P�); U =

(P+ � P�)=Z, and WDFs are formulated using the wave decomposition P =

(P+ + P�)=2; U = (P+ � P�)=2R.

3.4.2 A Re-de�nition of DWG Techniques and WDF Techniques

In this section we work towards a de�nition of DWG techniques and WDF techniques

such that they are compatible in application to acoustical systems. Two issues need to be

clari�ed beforehand:

� The de�nition of DWG models is wider than that of WGFs. While WGF sections

model uniform cylindrical sections, DWG models may include sections that imple-

ment conical tubes (e.g., in [148, 119]). DWG models may also include any type

of other digital �lter to represent a lumped re
ectance (e.g., a bell re
ectance) or

transmittance phenomenon (e.g., lumped propagation losses).

� Several overlaps between WDF techniques and DWG techniques can be found in the

literature. For example, in [119], the bilinear transform (that is normally associated

with WDF techniques) is applied in a DWG modelling context. Furthermore, unit

elements, which are equivalent to short transmission-line sections, have been mod-

elled in WDF theory such that the resulting digital structure is equivalent to a short

bi-directional delay-line [51].
8In WDF theory, N -port junctions are called N -port adaptors.
9The bilinear transform causes frequency-warping e�ects [109].
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Given the above, we \re-de�ne" DWG techniques and WDF techniques such that there

remain two fundamental di�erences:

� DWG models are based on distributed models (which are spatially discretised at

a �xed spatial resolution), and WDFs are based on lumped elements (which are

discretised in a way that is independent of their spatial dimensions).

� In DWG modelling, the port-resistance is always equal to the characteristic

impedance, and as a consequence, the wave variables are always components of

physical quantities10. In the WDF approach, the port-resistance does not neces-

sarily equal the characteristic impedance, and therefore the wave variables are not

necessarily physical quantities.

In classical WDF theory, the wave variables are voltage waves, and DWG models are

usually formulated using pressure waves. In order to ensure compatibility between the

two techniques, we de�ne that the decomposition into travelling waves is always carried

out by:

P = P+ + P�; (3.60a)

U =
P+ � P�

R
: (3.60b)

where R is the port-resistance.

The choice between using DWG techniques and WDF techniques is mainly dependent

on the dimensions of the acoustical element that is to be simulated. This can be illustrated

with the following example. Consider the pipe with local volume expansion in �gure 3.18.

The volume expansion can be modelled as a DWG model, based on a piecewise cylindrical

bore approximation of the volume shape. Alternatively we can model it using WDF

techniques as described in section 3.3.2. Let's assume a desired model bandwidth of BW =

10kHz, a sample rate fs = 44:1kHz, and a free wave velocity c = 343m/s. The smallest

acoustic wavelength is then � = c=BW = 34:3mm, and the spatial sampling interval of

the DWG model with highest possible spatial resolution (i.e., the Kelly-Lochbaum model)

is �x = cT=2 = 3:89mm. If the length of the volume expansion is of the same order as

the spatial sampling interval, then the volume is not well simulated with a DWG model,

because the spatial resolution is too low for a good approximation of the volume shape

(see �gure 3.18). Assuming that all dimensions of V are of the same order as the sampling

interval, it follows that they are small in comparison with the acoustic wavelength. Thus,

the acoustical behaviour of the volume is well described by a lumped element model and

as a consequence, a WDF model will provide good results in this case. On the other

10By \physical quantaties" we mean quantaties that in principle can be directly physically measured.
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Figure 3.18: Piecewise cylindrical bore approximation of a small volume shape. The section
length �x = cT=2 is the smallest possible section length in a DWG model. Because the length
of the volume is relatively small in comparison with �x, the piecewise approximation is not very
accurate.

hand, if the dimensions of V are large in comparison with the acoustic wavelength, a

lumped element model is inaccurate at the higher frequencies, thus a WDF model would

not form an accurate simulation. Since � > �x, it follows that in this case the length

of the volume expansion is large in comparison with the spatial sampling interval, thus

a more accurate piecewise bore model approximation is possible. Provided that only the

length of the volume expansion is large in comparison with the acoustic wavelength, the

acoustical behaviour of the volume is then be accurately simulated with a one-dimensional

DWG model.

3.4.3 Wave Digital Modelling

A suitable name for the combined approach is \wave digital modelling" (WD modelling),

since both DWG techniques and WDF techniques use wave variables in the digital domain.

It is advantageous to use this combined approach because, as seen in the last section,

DWG and WDF techniques are complementary in the sense that the DWG approach

works well for simulation of long acoustic systems (that may be treated as distributed

acoustic elements), and the WDF approach works well for small acoustic systems (that

may be treated as lumped acoustic elements).

We note that an extensive study has recently been carried out by Bilbao [30] on

strongly related techniques for discrete-time modelling of vibrating systems. Bilbao's work

addresses the more general problem of numerically solving partial di�erential equations

(PDEs) by means of methods that use wave variables. While the methods used in the

present study are limited to simulation of one-dimensional waveguides, Bilbao discusses

multidimensional (MD) systems. However, the process of deriving a discrete-time simu-

lation consists of the same steps: given a set of PDEs that describes a certain physical

system, the �rst step is to derive an equivalent network of this system, and the second
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step is to introduce wave variables and apply some form of discretisation. As shown by

Bilbao, WDF and DWGmodelling techniques can in fact be uni�ed as alternative cases of

a more general class of �nite di�erence schemes for numerical integration of PDEs. This

larger class is referred to by Bilbao as \wave" or \scattering" methods. The wave digital

modelling approach developed in the present study can be considered as a speci�c subset

of this larger class of methods.

3.4.4 Frequency Warping

A possible disadvantage of mixing WDF techniques with DWG modelling techniques is

that the frequency-axis is di�erent for the elements derived with these methods; elements

derived with WDF techniques have a frequency axis that is warped by the BT [109], while

no such frequency warping occurs for elements derived with DWG modelling techniques.

However, distortion of the frequency axis can occur with using DWGmodelling techniques

due to aliasing e�ects. If we assume that the signal variables of a wave digital model are

band-limited, so that aliasing e�ects are negligible, the two approaches are only exactly

compatible at frequency ! = 0 (DC); away from DC they diverge. Via variation of the

value of the bilinear operator (the coeÆcient � in equation (3.40)), the BT allows one more

WDF frequency to be matched to a DWG frequency. Hence in principle it is possible to

match the resonance frequency of a WDF element compatibly to the DWG frequency axis.

For example, this approach is potentially useful for accurate modelling of the resonance

of a brass mouthpiece.

However, one may also argue that if the sampling frequency of the wave digital model is

chosen suÆciently high, the warping e�ects due to the BT will always be very small in the

frequency range that is important with respect to modelling the vibrations inside the bore

of the instrument. That is, the frequencies below the cut-o� of the bore (which for wind

instruments is usually between 1 and 3 kHz) are far more important with respect to the

sound generation mechanism than the frequencies above cut-o�. Hence one may construct

a discrete-time model of a wind instrument in which the bore is modelled accurately only

at low frequencies; the \engine" for generating vibrations inside the bore can be simulated

this way, and the generated vibrations will be accurate at low frequencies. The high

frequency components are not modelled accurately, but this only a�ects the sound that is

radiated from the instrument, and can be compensated by applying an appropriate �lter.

An additional reason for taking such a \low-frequency engine" approach is that many of

the acoustic theories from which eÆcient discrete-time models can be derived are valid

only for a limited bandwidth. For example, the woodwind tonehole model discussed in

chapter 5 has been shown to agree with experimental results only up to 5kHz.

Within the \low-frequency engine" approach, the main thing to consider with respect
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Figure 3.19: Mapping between the normalised continuous-time and discrete-time frequencies
resulting from the bilinear transform.

to frequency warping e�ects is the level of warping at the highest relevant frequency. When

using the customary value � = 2fs, the warping introduced with the BT can be expressed

with the relationship [109]:


d =
1

�
tan�1(�
c); (3.61)

where 
c is the continuous-time frequency fc divided by the sample rate fs and 
d is

resulting discrete-time frequency fd, also divided by fs. The plot of this relationship

in �gure 3.19 demonstrates that the warping increases with frequency. From equation

(3.61) one may derive that the di�erence between fc and fd is smaller than 1 percent at

frequencies below 0:05fs. For instance, the warping e�ect is smaller than 1 percent at

frequencies below 2.4kHz when using a standard audio sample rate fs = 44100. We note

that wave digital models do generally not exhibit the exact BT-warping; this is because

only parts of the model are discretised using the BT. Nevertheless, the mapping relation

plotted �gure 3.19 provides useful information when deciding on wave digital simulation

parameters such as the sample rate.

3.5 Conclusions

In this chapter we have discussed various techniques for discrete-time modelling of linear

acoustic tubular systems. In section 3.1 we have seen that the basic feedback structure
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for modelling a musical wind instrument can be numerically solved using the re
ection

function method without making the traditional assumption of a zero instantaneous re-


ection. We did not discuss how the re
ection function can be derived from an acoustical

measurement. For a detailed discussion of this subject, we refer to Gazengel et al. [54].

Convolution methods, such as the full re
ection method, are not particularly suitable

for application in a musical sound synthesis context. However, they provide a means for

veri�cation of and comparison with the other techniques employed in this study.

In section 3.2, the basic principles and properties of digital waveguide modelling were

discussed. While DWGmodelling techniques are well-established in the context of physical

modelling, previous applications of wave digital �lter techniques (or techniques akin to

these11) to musical acoustics have been very sporadic. The systematic application of

WDF techniques to simulation of lumped elements in a model of an acoustical bore, as

discussed in section 3.3, is a novelty. We have seen in section 3.4 that these techniques

can be combined to form a more general discrete-time modelling approach (\wave digital

modelling"), in which model units are discretised with WDF or DWG techniques according

to whether they are best approximated as distributed or lumped elements, respectively.

11Van Duyne et al. [153] and Borin and Rochesso [31] have applied techniques that are similar to WDF
techniques.



Chapter 4

Digital Waveguide Modelling of

Non-Flaring Bores

In this chapter, discrete-time modelling of wave propagation in cylindrical and conical

bores by means of digital waveguide (DWG) modelling techniques is discussed. The DWG

modelling approach is based on eÆcient simulation of lossless wave propagation by means

of delay-lines [130, 148, 119]). The main challenge within the approach is to maintain a

good balance between accuracy, stability and eÆciency when adding more complexities to

the model, such as viscothermal losses and tubular junctions.

The chapter is organised as follows. In the �rst section we brie
y discuss the ap-

plication of digital waveguide modelling techniques to simulation of wave propagation in

cylindrical bores. It is well known that the delay-lines that are employed in digital waveg-

uide modelling need to be interpolated for simulation of wave propagation in bores of

arbitrary length [130, 148]. Fractional delay �lters can be used for this purpose, and we

brie
y review this topic in section 4.2. In the last two sections of the chapter we discuss

discrete-time modelling of wave propagation in conical bores. The basic simulation prin-

ciples and formulae are given in section 4.3, and in section 4.4 we investigate the stability

properties of these simulations.

4.1 Cylindrical Bores

4.1.1 Lossless Wave Propagation

In section 2.2.1 we have seen that one-dimensional, lossless wave propagation in cylindrical

bores is described by the equation:

@2p

@x2
=

1

c2
@2p

@t2
: (4.1)

81



82 CHAPTER 4. DWG MODELLING OF NON-FLARING BORES

+
1p

−
1p

+
2p

−
2p

Nz−

Nz−

Figure 4.1: Wave propagation in a cylindrical bore simulated by means of a bi-directional delay-
line. The z�N unit indicates a delay-line of length N .

As discussed in section 3.2, wave motion governed by this wave equation can be simulated

by means of digital waveguide techniques. In the case of modelling a cylindrical pipe of

length L, the delay-time associated with travelling from one end to the other is L=c. Given

a sample period T = 1=fs, wave propagation in the pipe is simulated with a bi-directional

delay-line of length N = L=(c T ) (see �gure 4.1). We note that the delay-lines can only be

realised in discrete-time for integer values of N , hence this formulation has the limitation

that the length of the pipe must be equal to a multiple of the spatial sampling interval

�x = c T . As discussed in section 3.2.1, the pressure at a speci�c point x along the pipe

axis is found by summing the forward- and the backward-travelling waves at that point.

4.1.2 A Junction of Two Cylindrical Sections

Some wind instrument bores contain a discontinuity in diameter. The wave scattering at

the discontinuity can be modelled as a junction of the two cylindrical sections of di�erent

cross-section (see �gure 4.2). In section 2.3.3, the scattering equations for this type of

junction were found to be (equation (2.80)):

"
P+
1

P�1

#
=

1

2

"
1 + Z1

Z2
1� Z1

Z2

1� Z1
Z2

1 + Z1
Z2

#"
P+
2

P�2

#
: (4.2)

Computation of wave scattering in a discrete-time model has to be carried out in a causal

order, hence we need to know how the re
ected waves P+
2 and P�1 are computed from the

incident waves P+
1 and P�2 :"

P+
2

P�1

#
=

"
2Z2

Z2+Z1
�Z2�Z1

Z2+Z1
Z2�Z1
Z2+Z1

2Z1
Z2+Z1

#"
P+
1

P�2

#
: (4.3)
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Figure 4.2: A junction of two cylindrical bore sections.

The scattering equation can be written in a more compact form if all matrix elements are

expressed in terms of the junction re
ection coeÆcient kj :"
P+
2

P�1

#
=

"
1 + kj �kj
kj 1� kj

#"
P+
1

P�2

#
; (4.4)

with

kj =
Z2 � Z1
Z2 + Z1

: (4.5)

If viscothermal losses are neglected, then we may write:

kj =
S1 � S2
S1 + S2

: (4.6)

For computation in discrete-time, it is advantageous to formulate the scattering equations

in one-multiplier form [148]:

P+
2 = P+

1 +W; (4.7a)

P�1 = P�2 +W; (4.7b)

with the intermediate variable

W = kj
�
P+
1 � P�2

�
: (4.8)

The signal 
ow diagram for wave scattering at a junction of two cylindrical tube sections is

depicted in �gure 4.3. As mentioned in section 3.2.4, this type of junction is often referred

to as a Kelly-Lochbaum (KL) junction [92, 130, 148]. The one-multiplier form is typically

useful in applications where the computational eÆciency is a high priority.
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Figure 4.3: A Kelly-Lochbaum junction in one-multiplier form.

4.1.3 Inclusion of Viscothermal Losses

If viscothermal losses are taken into account, wave propagation over a length L can be

represented with the transfer function:

Ĥ(!) = e��L; (4.9)

where � is the lossy propagation constant as de�ned in equations (2.57) in section 2.2.3.

The lossy transfer function Ĥ(!) contains the same delay-term as the lossless transfer

function H(!) = e�j ! L=c. As in the lossless case, this delay can be simulated by means

of a delay-line. What remains is to model the propagation losses, which are de�ned as:

Hloss(!) =
Ĥ(!)

H(!)
=

e��L

e�j ! L=c
: (4.10)

We can approximate the propagation losses with a digital �lter, and implement the com-

plete propagation path by cascading this \loss-�lter" with the delay-line. The resulting

lossy digital waveguide structure is depicted in �gure 4.4.

Nz−

Nz−

loss

loss

+
1p

−
1p

+
2p

−
2p

Figure 4.4: Digital waveguide model of a cylindrical bore taking into account viscothermal losses.
Each loss unit indicates a digital �lter approximation of the losses associated with travelling from
one end of the bore to the other.
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Figure 4.5: Digital �lter approximation of the propagation losses of a cylindrical bore using the
output-error minimisation method. The bore length was taken such that the propagation delay
equals 50T seconds, which corresponds to a length of L � 389mmusing a sample rate fs = 44:1kHz.
The minimisation was done using a weighted least-square error, whereby the weighting was chosen
such that the digital �lter will have a good �t at the lower frequencies.

The most straightforward way to approximate the propagation losses is by means

of an FIR �lter [151]. However, IIR �lters are generally more powerful approximators

[109], thus an IIR �lter approximation is likely to result in a better balance between

accuracy and eÆciency. Since in wind instrument modelling, the lower frequencies (i.e.

the frequencies below cut-o�) are of more importance than the higher frequencies (i.e.

the frequencies above cut-o�), the IIR �lter design must be carried out such that the

resulting digital �lter forms a good �t at the lower frequencies, possibly at the cost of

increased discrepancy at the higher frequencies. This can be achieved with the use of

iterative, frequency-weighted error minimisation techniques. Here we applied the output-

error minimisation technique1 [127], which uses iterative gradient descent search methods

to minimise a weighted least-square approximation error. This method has previously

been applied to modelling viscothermal wave propagation by Scavone [119]. The frequency

response of a 5th-order IIR approximation designed using this technique is compared with

Hloss(!) in �gure 4.5.

In order to model the scattering at a junction of two cylindrical tube sections while

taking into account the e�ects of viscothermal losses, the scattering junction equations

must be re-derived using lossy formulations of the characteristic impedances. Therefore

we may model the junction as in �gure 4.2, but with the junction re
ection coeÆcient kj

replaced with a digital junction re
ection �lter. The ideal response of the junction �lter

is:

Kj(!) =
Z2(!)� Z1(!)
Z2(!) + Z1(!)

; (4.11)

1Implemented in MATLAB
r
with the function invfreqz.
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Figure 4.6: Frequency response of the re
ection �lter of a cylindrical junction, with radii a1 =
7mm and a2 = 5mm. The �gure makes clear that the discrepancy between the junction re
ection
�lter Kj(!) and the \lossless" junction re
ection coeÆcient kj is extremely small.

where the characteristic impedances Z1 and Z2 are de�ned by (2.57). The frequency re-

sponse of the junction re
ection �lter is compared with the junction re
ection coeÆcient

(as used in the lossless case) in �gure 4.6. Because the discrepancy is extremely small,

the e�ects of viscothermal losses on modelling cylindrical junctions are usually neglected.

Hence in discrete-time modelling, the Kelly-Lochbaum model (see �gure 4.3) can be ap-

plied without introducing any signi�cant errors.

4.2 Fractional Delays

So far in this chapter, the length of a delay-line has been restricted to an integer multiple of

the sample period. In other words, only a limited number of bore lengths (on a linear grid)

can be simulated in this way (see �gure 4.7). The length of a real acoustical instrument

bore will in most cases not fall on this grid. Therefore interpolating methods are required

in order to simulate a delay-line of non-integer or fractional length. This can be achieved

by cascading the delay-line with a digital �lter that has a phase delay that approximates

the fractional delay in the important frequency range (see �gure 4.8). A digital �lter

x∆

Figure 4.7: The length of bore simulated with the use of a delay-line has to be a multiple of the
spatial sampling interval �x = cT .
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Figure 4.8: Digital waveguide simulation of a cylindrical bore of arbitrary length. The delay
associated with wave propagation in backward- and forward-direction is modelled with a cascade
of a delay-line (z�N ) and a fractional delay �lter (FD).

applied in this way is referred to as a fractional delay (FD) �lter. In general, an FD �lter

is designed to approximate the transfer function of the ideal fractional delay:

Hid(!) = e�j!d; (4.12)

which, at all frequencies, has a 
at magnitude response that equals unity and a phase

delay that equals d. Extensive research on the subject of FD �lter design has been carried

out in recent years [85, 86, 151, 147, 148]. In this section we will only review the most

commonly applied types of fractional delay �lters, namely Lagrange FIR interpolation

�lters and Thiran allpass interpolation �lters.

4.2.1 Lagrange FIR Interpolation Filters

Lagrange FIR interpolation �lters are based on the classical Lagrange interpolation

method. Given a fractional delay D = d=T (where d is the actual delay-time), the FIR

�lter coeÆcients are computed [148]:

h(n) =
NY
k=0
k 6=n

D � k
n� k for n = 0,1,2,...N; (4.13)

where N is the order of the FIR �lter. The main advantage of designing a FIR interpolator

by means of classical Lagrange interpolation is that the resulting �lter has a maximally


at error-function at ! = 0 [148]. A possible disadvantage is that FIR interpolators are

lowpass �lters, i.e. the higher frequencies are attenuated, whereas the ideal delay has unity

magnitude. V�alim�aki [148] has found that the Lagrange FIR �lters are passive only for

delays in a certain range that depends on the �lter order. When N is odd, the delay



88 CHAPTER 4. DWG MODELLING OF NON-FLARING BORES

should be chosen such that

(N � 1)=2 � D � (N + 1)=2; (4.14)

and when N is even, the delay should be chosen so that

(N=2)� 1 � D � (N=2) + 1: (4.15)

An additional advantage of the restrictions set in (4.14) and (4.15) is that the FIR �lter has

the smallest approximation error at the lower frequencies for delays in these \optimum"

ranges. Since the lower frequencies are the most vital to the tuning of an instrument bore,

it makes sense to have an FD �lter that approximates the ideal delay most closely in this

frequency range.

4.2.2 Thiran Allpass Filters

Allpass �lters are �lters that have unity magnitude [109]. The transfer function of a digital

allpass �lter is:

H(z) =
aN + aN�1z

�1 + : : :+ a1z
(N�1) + z�N

1 + a1z�1 + : : :+ aN�1z�(N�1) + aNz�N
; (4.16)

where N is the order of the �lter, and ak (k = 1; 2; : : :N) are the �lter coeÆcients. The

allpass �lter design that is most suitable in the context of digital waveguide modelling is

the Thiran allpass design, because the resulting �lter has a maximally 
at group delay at

! = 0 [86, 148]. The coeÆcients of the Thiran allpass �lter that implements a fractional

delay D are:

ak = (�1)k
"
N

k

#
NY
n=0

D �N + n

D �N + k + n
for k = 0; 1; 2; : : : ; N; (4.17)

with the binomial coeÆcient "
N

k

#
=

N !

k!(N � k)!
: (4.18)

Such a �lter is stable only when D > N � 1 [148]. Furthermore, the minimum average

discrepancy between �lter response and an ideal fractional delay is obtained for [148]:

N � 0:5 � D < N + 0:5: (4.19)

Hence in the case of a Thiran allpass �lter, the order N is best chosen as the integer

nearest to D.
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4.2.3 Fractional Delay Filter Comparison

In order to carry out a meaningful comparison between the allpass IIR and the Lagrange

FIR design approach, we require that within a 5kHz bandwidth the following criteria have

to be met:

� The magnitude response discrepancy should not exceed 1dB.

� The phase delay response should not di�er from the ideal delay by more than 2% of

the sample period.

Given a sample rate of fs = 44:1kHz, the lowest order �lters that meet these conditions

are the third-order Lagrange interpolator and the second-order Thiran allpass �lter. The

frequency responses of these �lters are shown in �gures (4.9) (4.10), and (4.11).

Frequency-Domain Comparison

A frequency-domain comparison does not seem to favour either of the two �lters. The

third-order Lagrange interpolation �lter has a slightly better phase delay �t while on the

other hand, the Thiran allpass interpolation �lter has no frequency attenuation.

Time-Domain Comparison

A physical model of a musical instrument is usually computed in the time domain due to

the nonlinearity of the sound generation mechanism. Figure 4.12 compares three di�erent

methods for digital approximation of a Dirac pulse delayed by the (fractional) time d =

2:49T seconds. In all three cases, the response shows a kind of \rippled" distortion of the

original (continuous-time) Dirac pulse, where the IFFT result clearly exhibits the strongest

ripple.

Computational EÆciency Comparison

At �rst sight, it might appear that the third-order Lagrange FIR �lter is computationally

less expensive than the second-order Thiran allpass IIR �lter, since in general, a direct-form

�lter realisation of anNth-order IIR �lter requires 2N+1multiplications, whereas anNth-

order FIR �lter uses N+1 multiplications. However, due to the (Hermitian) mirror-image

symmetry relation between the numerator and denominator polynomials of an allpass

transfer function, the Thiran allpass �lter can be computed using only N multiplications

[112]. In the case of the second-order Thiran allpass �lter, the �lter di�erence equation

can be written:

y(n) = a2 [x(n)� y(n� 2)] + a1 [x(n� 1)� y(n� 1)] + x(n� 2); (4.20)
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Figure 4.9: Magnitude response of a third-order Lagrange FIR interpolation �lter, computed for
eleven di�erent delay values in its optimum range (D = 1; 1:1; 1:2; :::;2:0). Note that the �gure
only exhibits �ve curves because the delays D and N �D result in the same magnitude response.
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Figure 4.10: Phase delay response of a third-order Lagrange FIR interpolation �lter, computed
for eleven di�erent delay values in its optimum range (D = 1; 1:1; 1:2; :::;2:0).
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Figure 4.11: Phase delay response of a second-order Thiran allpass interpolation �lter, computed
for eleven di�erent delay values in its optimum range (D = 1:5; 1:6; 1:7; :::; 2:5).
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Figure 4.12: Digital approximation of an Dirac pulse delayed by d = 2:49T seconds by means
of an IFFT (top), a third-order Lagrange interpolator (middle), and a second-order Thiran all-
pass interpolator (bottom). The dashed line indicates the delayed Dirac pulse as it would be in
continuous time. The sample rate is 44:1kHz.

where a1 and a2 are the �lter coeÆcients as given by (4.17), and where x(n) is the input

and y(n) is the output of the �lter. The second-order Thiran allpass �lter thus requires

only two multiplications, two less than the third-order Lagrange FIR �lter.

Time-Varying Fractional Delays

In some applications, the length of the bore needs to be gradually adjusted during oper-

ation. For example, this would be the case in a discrete-time simulation of a trombone

slide. This means that the delay-time and as a consequence, the coeÆcients of the FD

�lter are time-varying. In the case of an FIR �lter, varying the �lter coeÆcients over time

does not introduce any signi�cant numerical problems. On the other hand, the output

of an IIR �lter exhibits transient e�ects whenever �lter coeÆcients are updated. These

transients can be largely suppressed using \transient-elimination techniques" [152, 148].

However, this increases the computational costs of the IIR �lter implementation. Hence

for time-varying applications, the Lagrange FIR design appears to be more suitable.
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Suppression of Aliasing E�ects

Simulation of sustained wind instrument oscillations inevitably involves some form of

non-linear excitation of the air column resonances. As a consequence, a series of higher

harmonics is generated. This may lead to aliasing e�ects, because the non-linearity

can result in generation of frequencies above the Nyquist frequency. A possible way to

suppress these aliasing-e�ects is to employ a lowpass �lter. That is, if the frequencies

close to Nyquist are strongly attenuated, then the multiples of these frequencies that are

generated by the non-linear driving in the system will be of small amplitude. Thus, whilst

the response of a wind instrument is already typically lowpass, the extra attenuation

introduced when using Lagrange interpolators may further help to suppress aliasing e�ects.

In summary, the Lagrange FIR approach appears to be preferable to the Thiran allpass

approach in designing fractional delay �lters in application to physical modelling of wind

instruments, because (1) FIR �lters result in less numerical artefacts than IIR �lters in

time-varying applications, and (2) the lowpass magnitude response of Lagrange FIR �lters

is useful for the suppression of aliasing e�ects.

4.3 Conical Bores

4.3.1 Lossless Wave Propagation

As seen in section 2.2.2, the wave equation that describes lossless wave propagation in a

conical bore is:
@2p

@r2
+

2

r

@p

@r
=

1

c2
@2p

@t2
; (4.21)

where r is the cone apex distance. The pressure-wave solution of this wave equation for

frequency ! is:

p(r; t) = p+(r; t) + p�(r; t)

=
A

r
ej(!t�kr) +

B

r
ej(!t+kr); (4.22)

where A and B are arbitrary amplitudes. This travelling-wave solution is the same as

for plane waves in a cylindrical bore, apart from the scaling by 1=r. The scaling may be

interpreted as the decrease of amplitude of a pressure wave (due to the spreading of the

wavefront over a larger surface) as it travels away from the cone apex (see �gure 4.13). For

simplicity, no backward re
ections from the ends of the cone are included in the �gure.

As was found in section 2.2.2, the Fourier transforms of the forward- and backward-
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Figure 4.13: Wave propagation in a conical bore section. The amplitude of a forward-travelling
wave decreases by r1=r2 as it travels the from r1 to r2.

propagating waves at two points r1 and r2 in a cone are related:

P+
1 (!) =

�
r2
r1

�h
e+j!L

�=c
i
P+
2 (!); (4.23a)

P�1 (!) =

�
r2
r1

�h
e�j!L

�=c
i
P�2 (!): (4.23b)

Reversing the upper equation in (4.23), and taking the inverse Fourier transforms yields

p+2 (t) = g�1 p+2 (t�D); (4.24a)

p�1 (t) = g p�2 (t �D); (4.24b)

where g = r2=r1 is a simple scaling factor, and D = L=c is the delay-time, that equals the

time it takes for a wave to propagate from r1 to r2. These relations can be modelled in

discrete-time using a digital waveguide structure with added scaling by 1=g in the forward

direction, and g in the backward direction. The scaling factors may in fact be removed

without changing the re
ectance of the system. This is demonstrated in �gure 4.14.

Suppose that the conical waveguide is terminated with the spherical wave re
ectance R�(z)

(see �gure 4.14a). The factors and delay-lines are linear and commutative, thus the order

of units may be re-arranged without changing the system re
ectance (see �gure 4.14b).

In this re-arranged system, the scaling factors clearly cancel each other out, and may be

entirely removed from the system without changing the system re
ectance. Note that

with the scaling factors removed, the transmittance is not the same. Suppose that the

forward-propagating wave p+1 has the correct amplitude, then if the actual physical value

of the pressure at point r = r2 of the cone is to be obtained, an \extrinsic" scaling by a

factor g has to be done (see �gure 4.14c)).
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Figure 4.14: Discrete-time modelling of spherical wave propagation in a conical bore section. The
cone is terminated with a spherical wave re
ectance R�(z). Each z�N unit indicates a delay-line.
The model units in (a) are linear and commutative, thus the system may be re-arranged such that
the structure depicted in (b) results. For computing the re
ected wave p�1 , the scaling factors g
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removed (c), the pressure at point r = r2 is to be obtained with an \extrinsic" scaling.
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4.3.2 A Junction of Two Conical Sections

The bi-directional delay-line structure in �gure 4.14 implements spherical wave propaga-

tion in a conical bore section. In the case of a junction of two conical bores (see �gure 4.15),

the abrupt changes in diameter and taper cause wave scattering. The boundary conditions

at the junction are:

P+
1 + P�1 = P+

2 + P�2 ; (4.25a)

Y +
1 P+

1 � Y �1 P�1 = Y +
2 P+

2 � Y �2 P�2 ; (4.25b)

where Y �1 = 1=Z�1 and Y �2 = 1=Z�2 are the characteristic admittances at the left and the

right side of the junction. If viscothermal losses are neglected, these are:

Y �1 =

�
S1
�c

� �
j!r1 � c
j!r1

�
; (4.26a)

Y �2 =

�
S2
�c

� �
j!r2 � c
j!r2

�
; (4.26b)

where S1 and S2 are the wave areas and r1 and r2 are the cone apex distances at the left

and right side of the junction, respectively. Solving for P+
1 and P�2 gives the scattering

equation: "
P+
2

P�1

#
=

"
T+(!) R+(!)

R�(!) T�(!)

#"
P+
1

P�2

#
; (4.27)
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with the scattering matrix elements

T+(!) =
Y +
1 + Y �1
Y �1 + Y +

2

; (4.28a)

R+(!) =
Y +
1 � Y +

2

Y �1 + Y +
2

; (4.28b)

R�(!) =
Y �2 � Y �1
Y �1 + Y +

2

; (4.28c)

T�(!) =
Y +
2 + Y �2
Y �1 + Y +

2

: (4.28d)

Since we have

T+(!) = 1 +R�(!); (4.29a)

T�(!) = 1 +R+(!); (4.29b)

the scattering equations can be re-written as:

P+
2 =

�
1 +R�(!)

�
P+
1 +R+(!)P�2 ; (4.30a)

P�1 = R�(!)P+
1 +

�
1 + R+(!)

�
P�2 : (4.30b)

After substitution of (4.26), the re
ectances R+(!) and R�(!) can be expressed:

R+(!) = �
�
B � 1

B + 1

�
� 2�

(B + 1) (j! + �)
; (4.31a)

R�(!) =

�
B � 1

B + 1

�
� 2B�

(B + 1) (j! + �)
: (4.31b)

where B = S1=S2 is the ratio of the wavefront areas at the junction, and � is given by

� =
2 (
2S2 � 
1S1)

S2 + S1
; (4.32)

where 
1 = c=2r1 and 
2 = c=2r2. The value of 
x (at point rx along the cone wall) is of

the dimension of frequency, and 1=
x may be interpreted as the (virtual) round-trip time

of a wave travelling from the cone apex to rx and back. For a diverging cone (small end on

the left, large end on the right), 
 is positive, and for a converging cone (small end on the

right, large end on the left), 
 is negative. For a cylindrical bore, which can be considered

as a special case of a conical bore, we have 
 = 0. The term (B � 1)=(B + 1) in both

re
ectances in (4.31) results only from the wavefront area discontinuity, and vanishes if

the wavefront areas are equal. The remaining terms in (4.31) mainly result from the taper
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Figure 4.16: A digital waveguide junction in one-�lter form.

discontinuity, and vanish for 
b = 
c. If we de�ne the junction �lter

Rj(!) =
��

j! + �
; (4.33)

and the coeÆcients

C1 =
2B

B + 1
; (4.34a)

C2 =
2

B + 1
; (4.34b)

C3 =
B � 1

B + 1
; (4.34c)

then the scattering equations can be written:

P+
2 = P+

1 + C3

�
P+
1 � P�2

�
+Rj(!)

�
C1P

+
1 + C2P

�

2

�
; (4.35a)

P�1 = P�2 + C3

�
P+
1 � P�2

�
+Rj(!)

�
C1P

+
1 + C2P

�

2

�
: (4.35b)

This form is particularly eÆcient, since both re
ected waves can be computed as the sum

of an incident wave and the intermediate variable W1:

P+
2 = P+

1 +W1; (4.36a)

P�1 = P�2 +W1; (4.36b)

with

W1 = C3

�
P+
1 � P�2

�
+ Rj(!)W0; (4.37)
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impulse invariance method time-interpolated convolution bilinear transform

b0
��1 + e�T

� �1� e��T � 1
�T

�
�+ �

b1 0 e��T + e��T � 1
�T

�
�+ �

a1 e��T e��T �� �
�+ �

Table 4.1: CoeÆcients of the digital junction �lter. � = 2=T is the bilinear operator.

and

W0 =
�
C1P

+
1 + C2P

�

2

�
: (4.38)

For computation in the discrete-time domain, the junction �lter Rj(!) has to be approx-

imated with a digital �lter Rj(z). This �lter is applied in the overall signal structure of

the conical junction model as demonstrated in �gure 4.16. This one-�lter form of the

general conical junction is more eÆcient than the two-�lter form used in previous work

[150, 148, 119] on this subject. We will refer to the structure in �gure 4.16 as a digital

waveguide junction.

What remains is the design of the digital junction �lter Rj(z). The problem consists

of discretising the one-pole �lter element

Rj(s) =
��
s+ �

: (4.39)

It appears that in previous work on discrete-time simulation of conical bores, three di�erent

methods have been used to discretise this conical junction re
ection �lter. V�alim�aki [148]

applied the impulse invariance method (IIM), whereas Scavone [119] and Amir [10] obtain

a discrete-time version of the junction �lter via the bilinear transform. A third method

can be found in the work by Mart��nez et al. [94], who obtain the re
ected wave by means

of a recursive formulation of time-interpolated convolution of the junction �lter impulse

response with the incident pressure wave. We will refer to this method as the \time-

interpolated convolution method" (TICM). In appendix G we show that all three methods
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Figure 4.17: Digital approximation of the junction �lter Rj(!), with r1 = 10mm, r2 = 5mm, and
B = 1. The sample rate is 44:1kHz.

are equivalent to passing the incident pressure wave through a �rst-order digital �lter:

Rj(z) =
b0 + b1z

�1

1 + a1z�1
: (4.40)

Table 4.1 summarises the coeÆcients as derived with the three di�erent methods. In order

to compare the di�erent discretisation methods, the magnitude responses of the digital

�lters obtained with the di�erent methods are computed for the dimensions r1 = 10mm,

r2 = 5mm, and B = 1. Figure 4.17 compares the resulting magnitude responses. All three

methods clearly result in a very close approximation at the lower frequencies. Note that

the responses obtained with the TICM and the BT are extremely close (the curves overlap

at most frequencies). We found that this is always the case except for extreme values of

� that correspond to modelling extreme taper discontinuities.

Junction Stability

All three discretisation methods convert stable analogue �lters into stable digital �lters2.

Hence if the analogue junction �lter Rj(!) is stable, then its discrete-time counterpart

Rj(z) is also stable. Unfortunately, Rj(!) is not stable for all physically feasible cases.

From (4.39) we can see that the analogue �lter is only stable if � > 0. This is true if

1

r2
>
B

r1
: (4.41)

The stability clearly depends on the values of B, r1 and r2. V�alim�aki [148] has indicated

2An analogue �lter is said to be unstable when it has poles in the right-hand side of the s-plane, and a
digital �lter is said to be unstable if it has poles outside the unit circle of the z-plane [109].
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Figure 4.18: Regions of stability of the junction �lter Rj(!).

the regions of stability for the junction �lter for the speci�c case of a junction with taper

discontinuity only (i.e. B = 1). In �gure 4.18, the regions of stability of the junction

�lter Rj(!) are indicated for the general case, according to equation (4.41). The use of an

unstable �lter element is generally very problematic, since its impulse response exhibits

unstable growth. However, it can be argued that a complete conical bore model should

always be stable, since it represents a passive physical system [5, 60, 148]. The literature is

not clear about whether this remains true in the case of a �nite-precision implementation.

Scavone [119] has reported that in �nite precision implementations, the round-o� errors of

the unstable junction �lters eventually become dominant, which leads to unstable growth.

On the other hand, Mart��nez et al. [94] and Barjau et al. [19] have performed time-domain

computations with the \multi-convolution algorithm", and have not reported any such

numerical stability problems. This subject clearly deserves some more investigation, and

is further discussed in section 4.4.

4.3.3 Fractional Delays and Viscothermal Losses

Fractional delay lengths can be simulated using fractional delay �lters, as described in

section 4.2. As with modelling cylindrical bores, these �lters are placed within the delay-

loop of a bore section. In section 4.1.3 it was explained that viscothermal losses can be

included in a digital waveguide model of a cylindrical bore section by placing digital �lters

at appropriate points in the digital waveguide structure. The same method can be applied

for simulation of lossy wave propagation in a conical section. For a bore section of length

L, such a digital loss-�lter approximates the response:

H(!) = e��L � ej!L=c: (4.42)

For cones of suÆciently small taper and length, � is computed as for a cylindrical bore

section with a radius equal to the mean radius of the conical section, using equation (2.57).
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Figure 4.19: Magnitude response of the re
ectance R�(!) for a junction with no diameter dis-
continuity, and with r1 = 10mm and r2 = 5mm.

If viscothermal losses are taken into account, the characteristic admittances of the

forward- and backward-travelling wave components are:

Y +
0 (r; !) = Y0

�
1 +

1

� r

�
; (4.43a)

Y �0 (r; !) = Y0

�
1� 1

� r

�
; (4.43b)

where Y0 = 1=Z0, where Z0 is given by (2.57). Equations (4.43) can be combined with

(4.28) in order to calculate the re
ectances and transmittances associated with a junction

of two conical bore sections. These re
ectances and transmittances are not the same as

those obtained without inclusion of viscothermal losses, although the deviation is generally

very small. For example, �gure 4.19 shows the re
ectance R�(!) for a junction with taper

discontinuity only, computed using the lossless � = j!=c and also computed using the

lossy formulation of �. In the context of time-domain modelling, the e�ect of including

the viscothermal losses on the junction re
ectance is usually neglected (see, e.g., [148, 10,

119, 94, 19]). The main reason for taking this approach is that the junction re
ectances

and transmittances are much harder to formulate in discrete-time form using the lossy

formulation. The small deviation in �gure 4.19 appears to justify this simpli�cation.

However, there are various consequences of this simpli�cation that appear to be completely

overlooked in the literature. Firstly, the error introduced by the simpli�cation tends to

have a small but noticeable e�ect on the height of the low-frequency impedance peaks

of a conical bore system. For example, this can be observed in the input impedance of

a truncated conical bore section of length L� = 700mm (see �gure 4.20). Secondly, for

some conical bore con�gurations, the inconsistent use of � results in a conical bore model

that exhibits a divergent re
ection function. This particular e�ect is further discussed in
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Figure 4.20: Input impedance of a truncated, open-ended conical section, as computed when
using a lossy and a lossless version of the propagation constant in formulating the junctions. The
cone length is 700mm, the radius at the input-end is 5mm, and the radius at the output-end is
20mm.

section 4.4.2. Thirdly, as will be seen in chapter 8, the simpli�cation can lead to signi�cant

e�ective-length deviations at low frequencies.

4.4 Stability of Conical Bore Simulations

As seen in section 4.3.2, the junction �lter associated with a taper discontinuity is unstable

for certain bore conical con�gurations. The use of such unstable �lters in digital signal

processing systems is normally highly unadvisable, since numerical problems are likely to

occur because of the unbounded exponential signal growth of the �lter output. In the

case of a conical bore model (i.e., a model of a bore that contains conical sections), a

discrete-time model contains unstable one-pole �lter elements that are directly derived

from their analogue equivalents that appear in the continuous-time model. Gilbert et al.

[60] and Agull�o et al. [6] have demonstrated that the (continuous-time) impulse response

of a one-dimensional conical bore model can be formulated as a sum of causal, growing

exponentials. Numerical calculations of this sum have indicated, at least for physically

feasible systems, that this impulse response is convergent, in other words that the system

is stable. Viscothermal losses were not taken into account in any of these calculations.

Although a continuous-time conical bore model is stable in theory, this is not neces-

sarily the case for a discrete-time implementation. In continuous-time, the re
ected and

transmitted waves can grow exponentially only for a limited time, because they are can-

celled out by further (multiple) re
ections. This \cancellation-mechanism" is very precise,

i.e., it can be easily disturbed by small model deviations. Discrete-time models are only

approximations of continuous-time models. The inevitable deviations introduced by simpli-
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Figure 4.21: A single truncated cone system, connected on both sides to a cylindrical tube. The
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Figure 4.22: Digital waveguide implementation of the single truncated cone system. The z�N

units indicate delay-lines, the FD units indicate fractional delay �lters, and the DWG J1 and
DWG J2 units indicate conical junctions. The multipliers g1 and g2 are introduced in the system
to simulate end re
ections in the cylindrical sections.

�cations and discretisations may therefore disturb the cancellation-mechanism. Moreover,

round-o� errors occur in �nite-precision implementations of discrete-time models, which

could lead to further instability problems. In this section we investigate the stability of

�nite-precision implementations of conical bore simulations. The results presented here

are calculated for the speci�c bore con�guration in �gure 4.21. Accuracy aspects of the

simulation of this bore con�gurations are investigated in section 4.5.

4.4.1 Simulation without Propagation Losses

Using the techniques described in section 4.3.1 and section 4.3.2, the truncated cone system

in �gure 4.21 can be simulated in discrete-time with the digital waveguide model depicted

in �gure 4.22. Viscothermal losses are not taken into account at this point. In order to

simulate end re
ections in the cylindrical sections, the termination coeÆcients g1 and g2

are introduced. This system contains one unstable �lter element, namely the junction

�lter of the DWG junction J1.



104 CHAPTER 4. DWG MODELLING OF NON-FLARING BORES

Anechoic Simulation

The impulse response of this system was calculated using the three di�erent methods for

discretising the junction �lter introduced in section 4.3.2. The fractional delays were simu-

lated with the third-order Lagrange interpolation �lters discussed in section 4.2. Anechoic

bore terminations are simulated by setting g1 = 0 and g2 = 0. The impulse response was

also computed by applying an inverse Fourier transform (IFFT) to a frequency-domain

result obtained using transmission-line matrices. Figure 4.23 shows the resulting impulse

responses. The ripples in the inverse Fourier result are due to the frequency-domain win-

dow e�ect. The impulse responses obtained with the digital waveguide model also exhibit

small ripples at points in time where strong re
ections occur. These ripples are due to

the use of fractional delay �lters. We note that the results obtained using the BT and the

TICM are extremely close.

Echoic Simulation

The same simulation can be carried out for an \echoic" truncated cone system. That is, we

set g1 = 1, which simulates a closed end at the left-hand side, and we set g2 = �1, which
simulates an open end at the right-hand side. Such a bore con�guration is not dissimilar

to a musical wind instrument air column. Of course, in a real wind instrument bore, the

closed-end re
ectance is frequency-dependent. The \�1" end re
ectance is nevertheless

suitable for the purposes of investigating the stability properties of the system. Figure 4.24

compares the IIM result to the BT result. The echoic simulation is entirely lossless (i.e., no

wave energy is dissipated). Thus in theory, the waves propagating in the bore never decay

to zero. The impulse response obtained using the BT demonstrates this, and a similar

result was obtained using the TICM. However, the impulse response obtained using the

IIM appears to be divergent. As can be seen in �gure 4.24, the response is correct for the

�rst few 100 milliseconds, but starts to exhibit unstable growth after about t = 400ms.

Further simulations were carried out with various other combinations of the termina-

tion coeÆcients g1 and g2. Table 4.2 (part A) summarises the results, which indicate that

the IIM results in a convergent impulse response only when at least one of the bore ter-

minations is anechoic. It must be noted that the stability is subject to the 
oating-point

precision used in the calculations; all results presented in this section are calculated using

64-bit 
oating-point precision, unless mentioned otherwise. Simulations of a variety of

di�erent bore con�gurations (i.e., di�erent diameters and bore lengths, as well as a larger

number of sections), indicate that under these circumstances, stability is preserved with

the BT and the TICM for all the possible passive3 combinations of g1 and g2.

3The conical bore system is a proiri not passive whenever one of the termination coeÆcients has an
amplitude larger than unity.
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Figure 4.23: Impulse response of the (anechoically terminated) truncated cone system.
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Figure 4.24: Impulse response of the (echoicically terminated) truncated cone system.

As mentioned before, setting one of the termination values to 1 corresponds to mod-

elling a closed end, while a zero re
ection simulates an anechoic termination. For a realistic

open-end termination, one needs to replace the termination coeÆcient with a frequency-

dependent �lter. The results obtained with simulations with an open-end re
ectance �lter

(in the form of a fourth-order IIR �lter) were no di�erent than those obtained with set-

ting one of the termination coeÆcients to �1. That is, the simulations remained stable

whenever the BT or the TICM was used with 64-bit precision.

The stability of the simulations without viscothermal losses was further tested by

� computing the impulse response for much longer simulation times (up to 200 sec-

onds).

� using a variety of more complex input signals (such as sequences of rectangular

pulses, repetitive noise bursts, and audio-signals from CD-recordings).

� simulating a variety of more complex piecewise conical bore models.

� using lower precision (32-bit and 16-bit).

All tests were carried out twice, �rst using the BT and then using the TICM. Whenever

the coeÆcients and signal variables of the system were computed using 64-bit 
oating

point precision, the simulation resulted in a convergent impulse response. However, lower-

precision simulations can be unstable. For example, the impulse response computed with

a 16-bit simulation of the truncated bore system with g1 = 1 and g2 = 1 exhibited unstable

growth.
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Termination A: Simulation without VT losses B: Simulation with VT losses

g1 g2 IIM BT TICM IIM BT TICM

0 0 stable stable stable unstable unstable unstable

0 1 stable stable stable unstable unstable unstable

0 -1 stable stable stable unstable unstable unstable

1 0 stable stable stable unstable unstable unstable

1 1 unstable stable stable unstable unstable unstable

1 -1 unstable stable stable unstable unstable� unstable�

-1 0 stable stable stable unstable unstable unstable

-1 1 unstable stable stable unstable unstable� unstable�

-1 -1 unstable stable stable unstable unstable� unstable�

Table 4.2: Stability of the truncated cone system. Part A shows the simulation results without

inclusion of viscothermal losses, and part B shows the results with inclusion of viscothermal losses.

All results were obtained using a sample rate of 44:1kHz and a 64-bit 
oating-point precision. A

simulation that is unstable but allows to calculate the (truncated) impulse response is indicated

with \unstable�".

4.4.2 Inclusion of Viscothermal Losses

For accurate simulation of conical bore systems, viscothermal losses need to be taken into

account. This can be done by placing loss-�lters in the delay-loops in �gure 4.22. As

explained in section 4.1.3, these loss-�lters approximate the propagation losses in each

bore section. In this case we employed 4th-order IIR �lters, which accurately model the

propagation of low-frequency wave components. As explained in section 4.3.3, the junc-

tion models are based on a lossless formulation of the propagation constant. In order to

investigate the e�ect this simpli�cation has on the impulse response, we computed two

di�erent IFFT results: one in which the junctions were computed with a lossy propa-

gation constant (IFFT (1)), and another in which the junctions were computed with a

lossless propagation constant (IFFT(2)). In �gure 4.25, these results are compared with

the impulse responses computed with the digital waveguide simulation, respectively using

the BT and the TICM. Apparently, using the lossless propagation constant causes some

form of \DC-o�set" in the impulse response. This e�ect is not the same for the IFFT(2)

result as it is for the discrete-time simulation results, but in all three cases the multiple

re
ections clearly do not cancel each other out properly. This e�ect occured for all other

bore con�gurations with anechoic terminations that were simulated. The e�ect can in

fact not be considered as a DC-gain, because at DC, the model in which viscothermal



108 CHAPTER 4. DWG MODELLING OF NON-FLARING BORES

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

0

5

10

15
x 10

−3

am
pl

itu
de

IFFT (1)           

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

0

5

10

15
x 10

−3

am
pl

itu
de

IFFT (2)           

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

0

5

10

15
x 10

−3

am
pl

itu
de

BT                  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

0

5

10

15
x 10

−3

time (ms)

am
pl

itu
de

TICM               

Figure 4.25: Impulse response of the (anechoically terminated) truncated cone system, as com-
puted with inclusion of viscothermal losses.
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losses are included is equivalent to the model with inclusion of those losses (i.e., there

are no viscothermal losses at DC). Hence it must be considered as a disturbance of the

cancellation-mechanism at frequencies other than DC. In both the BT and the TICM sim-

ulation, this results in a divergent impulse response. This is obviously a serious 
aw of the

simulation method; the di�erence between the results IFFT(1) and IFFT(2) in �gure 4.23

strongly indicate that the cause of the instability is the inconsistency in the formulation

of the propagation constant, rather than any errors introduced by the discretisation or by

round-o� errors.

As can be seen from part B of table 4.2, none of the simulations with inclusion of

viscothermal losses are fully stable. However, it was found that when (1) setting one of

the termination coeÆcient to �1, and (2) setting the other to either 1 or �1, one is able
to run the simulation using the BT or the TICM long enough to compute the impulse

response without any signi�cant numerical problems. That is, numerical errors start to

dominate only long after \normal" oscillations have decayed. Such \relative stability" is

indicated with \unstable�" in table 4.2. With the calculations carried out for the bore

con�guration in �gure 4.21, the signal growth typically starts to appear after more than

200 seconds of simulation time, which is many times longer than a typical e�ective length of

the impulse response of an acoustical bore. As with the simulations in which viscothermal

losses are excluded, the results obtained with one of the termination coeÆcient set to �1
are the same as those obtained with that coeÆcient replaced by a passive �lter, with the

added restriction that the response of this �lter at ! = 0 has to be exactly �1. That is,
the truncated impulse response can be computed when at least one of the terminations

corresponds to having a -1 re
ection at DC, and neither of the terminations is anechoic.

In summary, the simulation results indicate that the none of the methods discussed

result in a stable simulation when viscothermal losses are included. However, they also

indicate that the truncated impulse response of the system can be computed whenever

the bore contains (1) no anechoic terminations and (2) at least one termination for which

the re
ectance R is �1 at ! = 0. This is a useful property, because models of musical

wind instruments are usually formulated such these conditions are ful�lled; the radiation

impedance associated with an open end of an acoustical bore is by de�nition zero, which

corresponds to open-end re
ectance R(!) for which R(0) = �1, practically all musical

wind instrument that contain conical bore sections are open-ended, and the input-end is

e�ectively closed by either the lips or the reed.

4.5 Accuracy of Conical Bore Simulations

For the purpose of investigating accuracy aspects, the truncated bore system depicted in

�gure 4.21 is simulated with the termination coeÆcients g1 = 0 and g2 = 0:8. The choice
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Figure 4.26: Re
ectance magnitude of the truncated cone system, with g1 = 1 and g2 = 0:8.

of the latter coeÆcient corresponds to having a diameter discontinuity at the output-end,

i.e., another cylindrical bore section attached to this end which is in turn anechoically ter-

minated. This con�guration is a suitable choice for the purpose of comparing how well the

three di�erent methods for discretisation of the junction �lters perform; choosing g2 = 1

or g2 = �1 leads to a con�guration for which the resonances are of in�nite strength, while

setting g2 = 0 results into a small number of very weak resonances, for which the exact

peak-frequencies are not well de�ned. On the other hand, setting g2 = 0:8 amounts to

having a certain amount of losses at all frequencies, which results in well-de�ned reso-

nances, of which the peak amplitude and the frequency can be accurately determined. In

order to focus the comparison on the discretisation methods, viscothermal losses were not

included. As an \ideal reference", the result of a frequency-domain computation (i.e., a

transmission-line model) of the truncated bore system was used. Figure 4.26 compares the

three discrete-time modelling results to the ideal case in terms of the re
ectance magni-

tude. As could be expected, all three methods are relatively accurate at low frequencies,

but underestimate the ideal magnitude response at higher frequencies. This lowpass e�ect

is mostly due to the use of Lagrange interpolators. As in the comparison of the junction

�lter magnitude in �gure 4.17, the TICM and the BT give very similar results. Further-

more, it is noticable that the IIM result exhibits somewhat more deviation from the ideal

case than the BT and the TICM.

In order to obtain a measure for the accuracy of the di�erent discretisation schemes

that can be related to the perceptual properties of the human ear, we computed for each

case the input impedance from the re
ectance using equation (2.40). The positions and

heights of the input impedance peaks were determined, and the di�erences with the ideal

case computed. These \tuning-errors" and \damping-errors" are listed in table 4.3 for the

�rst 9 resonances of the system, for which the frequencies are below 3kHz. Resonances at



4.5. ACCURACY OF CONICAL BORE SIMULATIONS 111

IIM BT TICM

resonance �t �d �t �d �t �d

no. (cents) (dB) (cents) (dB) (cents) (dB)

1 -1.23 -0.08 -1.23 -0.02 -1.23 -0.02

2 -1.07 -0.28 -1.41 -0.04 -1.41 -0.04

3 -1.23 -0.29 -1.40 -0.03 -1.40 -0.03

4 -1.48 0.24 -1.44 -0.02 -1.44 -0.02

5 -1.33 -0.54 -1.43 -0.04 -1.43 -0.04

6 -1.43 -0.28 -1.43 -0.04 -1.43 -0.04

7 -1.40 0.43 -1.40 -0.04 -1.41 -0.04

8 -1.40 -0.70 -1.45 -0.06 -1.45 -0.06

9 -1.44 -0.28 -1.42 -0.06 -1.42 -0.07

mean -1.34 -0.20 -1.40 -0.04 -1.40 -0.04

Table 4.3: Tuning and damping errors of the conical bore simulation. The tuning-error �t is

computed as the interval between the simulation frequency and the ideal resonance frequency

(in cents), and the damping-error �t is computed as the amplitudal di�erence (in dB) between

the corresponding peak amplitudes. The last row in the table shows the mean errors over the 9

resonances. The di�erence in cents between the ideal frequency f1 and the simulation frequency f2

is calculated as 1200 � log2(f2=f1), thus a negative value in cents indicates that f2 is smaller than

f1.

higher frequencies are considered as relatively unimportant in our comparison, since the

air column of most wind instruments have a cut-o� below 3kHz.

As can be seen from the mean value of these errors, the IIM causes somwhat less

frequency warping than the BT and TICM. However, the frequency deviations are in

all cases smaller than the \just noticable di�erence" detectable by te human ear. It is

interesting to note that the warping introduced by discretising the junctions with the BT

does not result in the typical warping e�ects associated with the BT; as can be seen from

�gure 3.19 the BT causes a highly non-linear form of warping which increases strongly

with frequency. The results presented in table 4.3 show that the warping exhibited by the

digital waveguide model of the truncated bore system is approximately linear. In terms

of damping-error, the BT and TICM show considerably smaller values than the IIM, but

also in this case the errors introduced with the three di�erent schemes would not or hardly

be detectable the human ear.

Hence it may be concluded that when using a 44:1kHz sample rate, all three schemes
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introduce only very small errors in the important frequency range.

4.6 Conclusions and Future Work

We have seen that the propagation of waves in cylindrical and conical bore sections can be

simulated by means of digital waveguide techniques. This involves digital approximation of

fractional delays and frequency-dependent phenomena such as viscothermal losses, which

can be realised with the use of digital FIR and IIR �lters.

The results presented in the chapter indicate that if viscothermal losses are not in-

cluded, stable digital waveguide simulations of conical bore systems appear to be possible

when using the BT or the TICM for discretisation of the frequency-dependent scattering

at the junctions; if the IIM is used, the simulations appear to be stable only for bore

con�gurations that have at least one anechoic termination.

Unfortunately, none of the discretision schemes used in the present study appear to

result in stable simulations of conical bore systems when viscothermal losses are included.

Frequency-domain computations have indicated that the instability is at least partly due

to an inconsistent formulation of the propagation constant. That is, the propagation

constant is formulated taking into account the viscothermal losses when modelling the

propagation of waves in a conical bore section, while such losses are ignored when modelling

the scattering of waves at a conical junction. This inconsistent formulation appears to

be common in previously developed time-domain models of conical bores (for example

[5, 148, 10, 119, 19]). An interesting future topic would therefore be to determine the

impulse response analytically, with taking into account viscothermal losses. Gilbert et al.

[60] have performed this analysis without the inclusion of viscothermal losses, and have

shown that the impulse response can be written as an in�nite series of causal growing

exponentials, the sum of which is convergent. Interestingly, their calculations were carried

out with a consistent formulation of a \lossy" propagation constant k = (j!+�)=c. As the

authors have pointed out, such a formulation corresponds to taking into account losses,

but of a di�erent kind than the actual viscothermal losses. Extending their results towards

frequency-dependent losses might prove rather complicated from a mathematical point of

view, but may give a de�nite proof of divergence in certain cases where the junctions are

formulated using the lossless version of the propagation constant.

Furthermore we envisage that in order to �nd a method for stable discrete-time simu-

lation with inclusion of viscothermal losses, an interesting approach in future work would

be to derive junction models in which the propagation constant is formulated in its lossy

version.



Chapter 5

Wave Digital Modelling of

Woodwind Toneholes

The pitch of woodwind instruments is controlled mainly via opening and closing toneholes.

Toneholes are therefore essential tools for musical expression with woodwinds. The subject

of this chapter is the simulation of toneholes in discrete-time. Given that the model is to

be applied in the context of musical sound synthesis, a number of di�erent requirements1

have to be ful�lled. Firstly, the model should approximate the acoustic theories closely

in the range of the instrument resonances, so that the sound generation mechanism is not

distorted. Secondly, the model should allow dynamic control of its state. That is, a digital

model should be formulated such that the process of opening and closing of the tonehole

can be simulated. A third requirement of the tonehole model is that it can represent

toneholes of a wide variety of physically and musically feasible dimensions. For example,

it should be possible to model a narrow, long hole in the cylindrical bore of a clarinet as

well as a short, wide hole in the conical bore of a saxophone. Finally, the model should be

eÆcient in terms of computational costs, so that a real-time implementation on a standard

processor is possible. Additionally, it would be desirable to be able to obtain the sound

pressure that is radiated from the tonehole.

Tonehole models that were previously developed in the context of digital waveguide

modelling [151, 122, 136, 121] do not meet all of the above requirements. The basic

modelling approach is very similar to the approach taken in these prior studies, and can

be considered as a logical further development of the subject.

The chapter is organised as follows. The �rst section is a review of tonehole theory,

starting from a simple side branch model, and relating this to the more complex tonehole

theories developed by Keefe [73, 72, 76]. Then in section 5.2, we present a novel method

for modelling partially open holes. Finally in section 5.3, the partially open hole model is
1See chapter 1 for a more detailed explanation of the motivation and concepts behind these requirements.

113
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Figure 5.1: Cross-sections of a tonehole.

discretised by means of wave digital �lter techniques.

5.1 Tonehole Theory

This section forms a brief review of basic acoustic theories of woodwind toneholes. For

more advanced theories we refer to recent work on this subject by Nederveen et al. [102]

and Dubos et al. [47].

5.1.1 The Side Branch Model

The simplest way of modelling a tonehole is to consider it as a simple side branch of the

main bore. Figure 5.1 depicts this concept for a tonehole in a cylindrical bore. In this

approach, the tonehole height t is de�ned such that its product with the tonehole surface

Sb = �b2 equals the geometric volume Vb. It can be shown that t is related to the shortest

geometrical tonehole length tw by [76]:

t = tw + 0:125b(b=a)
�
1 + 0:172(b=a)2

�
: (5.1)

In the low frequency-limit, the height of a tonehole is usually small in comparison to the

wavelength2, and therefore the side branch can be modelled as a lumped acoustic element.

In the case of an open hole, the branch impedance may be formulated [84]:

Z(o)
s = Rs + jXs

=
� !2

4�c
+ j

� t
(o)
e !

� b2
; (5.2)

2Some woodwinds, such as the bassoon, have toneholes that are drilled into the main bore at an angle.
For such toneholes, the tonehole length can be considerably larger than usual, and may not be small in
comparison with the acoustic wavelength, even at low frequencies.
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Figure 5.2: A tonehole in a cylindrical bore (left), and its equivalent network (right).

where Rs and Xs are the open side branch acoustic resistance and reactance, respectively,

and t
(o)
e is the open-hole e�ective length. The e�ective (acoustical) length t

(o)
e di�ers from

its e�ective (geometrical) height t due to length-corrections at both the inner and outer

end of the tonehole. In the low-frequency limit, the resistance is negligible (Rs << Xs),
and the side branch approximately acts as an pure inertance:

Z(o)
s =

�t
(o)
e

Sb
j! = j!L; (5.3)

where L = (�t
(o)
e )=Sb is the acoustic inertance of the side branch, and Sb = � b2 is the side

branch cross-section. In the case of a closed hole, the branch impedance corresponds to

the input impedance of a short cylindrical section with a closed end:

Z(c)
s = �jZb cot

�
kt(c)e

�
; (5.4)

where Zb = (�c)=Sb is the characteristic impedance of the branch, and k is the free-space

wave number. In this case, no outer length-correction is applied, thus the closed-hole

e�ective length t
(c)
e is the sum of the tonehole height t and the inner-length correction.

In the low-frequency limit, the closed branch impedance acts as an approximately pure

compliance:

Z(c)
s =

�c2

j!Sbt
(c)
e

=
1

j!C
; (5.5)

where C = (Sbt
(c)
e )=(�c2). The equivalent network of a tonehole with impedance load Zs

is depicted in �gure 5.2. The shunt impedance is formulated with (5.3) for an open hole,

and with (5.5) for a closed hole.
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Figure 5.3: T-section network that represents a transmission-line model of a tonehole. The
series impedances Za=2 represent the (negative) main bore length-corrections associated with be
tonehole.

5.1.2 Keefe's T-section Model

The side branch model is formulated such that the tonehole has a zero geometric length

along the main bore axis, and can be inserted at the point of a bore model that matches

the centrepoint of the tonehole in the real bore. However, a real tonehole reduces the

e�ective acoustic length of the main bore, thus length-corrections must be applied to

the main bore due to the presence of the tonehole [20]. Moreover, since the direction

of plane wave propagation within the tonehole is perpendicular to the direction of plane

wave propagation in the main bore, there must be some bending of a wavefront travelling

into a tonehole. The bending of the wavefront requires the contribution of secondary

modes, which are evanescent in the main bore. Therefore an appropriate woodwind bore

model may be derived by taking into account the in
uence of the secondary modes only in

the vicinity of the toneholes. This approach was taken by Keefe [73, 72, 76], who used a

variational formulation (developed within the context of electromagnetic waveguide theory

[125]) to derive the transmission-line model parameters for a tonehole model based on a

slightly more complex T -section network (see �gure 5.3). The series impedance terms

Za=2 correspond to the negative length-corrections. The full transmission-line matrix

formulation of the single tonehole is:

"
P1

U1

#
=

"
1 Za=2

0 1

#"
1 0

Z�1s 0

#"
1 Za=2

0 1

#"
P2

U2

#
; (5.6)
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where the series impedance Za and shunt impedance Zs for open (o) and closed (c) tone-

holes are de�ned:

Z(o)
s = Z0 (a=b)

2 (jkte + �e) ; (5.7a)

Z(c)
s = �jZ0 (a=b)2 (cot(kt) + ykt) ; (5.7b)

Z(o)
a = �jZ0 (a=b)2 kt(o)a ; (5.7c)

Z(c)
a = �jZ0 (a=b)2 kt(c)a : (5.7d)

The open-hole e�ective length te is formulated:

te =
(1=k) tan(kt) + b

�
1:40� 0:58(b=a)2

�
1� 0:61kb tan(kt)

: (5.8)

If a pad of diameter 2R is placed at a distance h above the tonehole, this expression takes

on a slightly di�erent form:

te =
(1=k) tan(kt) + b

�
0:61 (R=b)0:18 (b=h)0:39+ (�=4)

�
1� 0:74(b=a)2

��
1� 0:61(R=b)0:18 (b=h)0:39kb tan(kt)

: (5.9)

The parameter �e represents the speci�c acoustic resistance for the open tonehole:

�e = 0:25(kb)2+ �t + (1=4)kdv ln(2b=rc); (5.10)

where rc is the outer radius of curvature of the tonehole, � is the real part of the prop-

agation wave number within the tonehole, and dv =
p
�=(�!) is the viscous boundary

layer thickness3. For a closed hole, there is an additional term (ykt) due to the localised

inhomogeneous acoustic �eld at the internal intersection of the tonehole with the main

bore [76], where y is:

y = 0:25(b=t)2+ 0:58(b=a)2� (�b)=(4t): (5.11)

The negative length-correction is represented by the series equivalent length4 ta. The

open- and closed-hole series equivalent lengths are:

t(o)a =
0:47 b (b=a)4

tanh(1:84t=b) + 0:62(b=a)2+ 0:64(b=a)
; (5.12a)

t(c)a =
0:47 b (b=a)4

coth(1:84t=b) + 0:62(b=a)2+ 0:64(b=a)
: (5.12b)

3� is the square root of the Prandtl number (see appendix A).
4The length-correction is negative for a positive value of ta, hence the minus-sign in the formulation of

Z
(o)
a and Z

(c)
a in (5.7).
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The tonehole transmission-line matrix formulation may be used in combination with the

transmission-line matrices for tubular sections as discussed in section 2.3 in order to model

a complete tonehole lattice. In [72], results obtained with this approach were veri�ed

with experimental results for a bandwidth of 5kHz. The lattice formulation forms an

accurate approximation of a woodwind bore provided that it can be assumed that there

are no interactions between the toneholes. As mentioned earlier, secondary modes are

active in the vicinity of tonehole discontinuities. As a consequence, tonehole interaction

occurs when the disturbances due to the secondary modes of di�erent toneholes overlap.

As a rule of thumb, one may assume that the secondary modes decay over a length

approximately equal to a duct diameter [74]. Thus the above lattice formulation remains

valid as long as consecutive tonehole edges are separated by at least twice the duct diameter

[119]. External interaction can also occur, though this phenomenon is usually relatively

insigni�cant at the lower frequencies. In [74], Keefe outlines how the tonehole e�ective

length and the e�ective interhole distances are a�ected by the presence of interaction.

5.2 A Lumped Element Model of a Partially Open Hole

5.2.1 Simpli�cations to Keefe's Model

In this section we set out to develop a simpli�ed model that approximates Keefe's T-section

model at the open and closed state. The �rst few simpli�cations involve the formulation

of the shunt impedance. In the simpli�ed model, we formulate Zs in the same way as in

the side branch model (i.e., as a lumped element). Hence the open-hole shunt impedance

is de�ned as in (5.3), and the closed-hole shunt impedance is de�ned according to (5.5).

The main objective is to de�ne the e�ective lengths t
(o)
e and t

(c)
e such that the simpli�ed

model forms a good low-frequency approximation of Keefe's formulation. For an open

hole, the best low-frequency approximation results if we use an open-hole e�ective length

that equals te (according to equations (5.8) and (5.9)) at ! = 0. If no pad is present, this

yields:

t(o)e = tej!=0 = t+ b
�
1:4� 0:58(b=a)2

�
: (5.13)

With pad above the hole, this expression takes the form:

t(o)e = tej!=0 =
t+ b

�
0:61 (R=b)0:18 (b=h)0:39+ (�=4)

�
1� 0:74(b=a)2

��
1� 0:61(R=b)0:18 (b=h)0:39 b t

: (5.14)

For a closed hole, we neglect the inner-length correction and use an e�ective length t
(c)
e = t.

Keefe's formulation of the closed-hole shunt-impedance amounts to using a closed-hole
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Figure 5.4: Open-hole and closed-hole e�ective length for a hole of dimensions b = 3:2mm and
tw = 3:4mm. There is no pad above the hole, and the main bore radius is 9:4mm.

e�ective length

t(c)e =
� c2

j!SbZ
(c)
s

; (5.15)

where Z
(c)
s is calculated with (5.7b). Figure 5.4 shows how the (constant-valued) open-

hole and closed-hole e�ective lengths of the simpli�ed formulation vary from the e�ective

lengths according to Keefe's formulation.

The second set of simpli�cations involves the series impedance Za. This impedance

depends mainly on the series equivalent length ta. Unfortunately, ta is de�ned slightly

di�erently for the closed state than it is for the open state (see equations (5.12)), which

complicates the formulation of a uni�ed tonehole model that can represent both states.

Fortunately, it was found that the �rst term in the denominator in these expressions (i.e.,

tanh(1:84t=b) for the open-hole and coth(1:84t=b) for the closed-hole) takes a value that

lies very close to 1 for practically all physically feasible tonehole dimensions. Therefore

we may simplify (5.12) to:

ta =
0:47 b (b=a)4

1 + 0:62(b=a)2+ 0:64(b=a)
: (5.16)

Furthermore, we anticipate a complication that arises when modelling the series

impedances in discrete-time: they represent negative length-corrections, formulated in the

form of a negative series inertance on either side of the shunt impedance (see �gure 5.3).

Simulation of a negative inertance network using WDF techniques normally leads to an

unstable two-port �lter [51]. Therefore we model the length-corrections by simply reduc-

ing the length of the main bore on either side of the tonehole. According to Barjau et

al. [19], there is no signi�cant loss of accuracy when using this alternative formulation for
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Figure 5.5: Plane wave re
ectance magnitude (top) and phase (bottom) of an open hole (left)
and a closed hole (right). The hole dimensions are b = 3:2mm and tw = 3:4mm, and the main
bore radius is 9:4mm.

musical wind instrument geometries. The total main bore negative length correction for

a tonehole with series equivalent length ta is [76]:

la = �(a=b)2ta: (5.17)

Thus if the length of the main bore sections on either side of the tonehole are l1 and l2,

they should be corrected to l1 + la=2 and l2 + la=2, respectively.

In order to investigate the combined e�ect of the simpli�cations, we computed the

plane wave re
ectance of the tonehole (as seen from the main bore). Figure 5.5 shows the

re
ectance magnitude and phase for the open and closed case.

5.2.2 Partially Open Holes

So far, we have discussed only the two extreme states of the tonehole (open and closed).

However, musical sound synthesis applications require dynamic control of the tonehole

state. In order to achieve this, we need to formulate a tonehole model that (1) can

represent partially open states and (2) is fully parametric. In the ideal case, we end up

with a model in which the tonehole state can be adjusted continuously through a single

parameter.
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Figure 5.6: A partially open tonehole (left), and its equivalent network (right).

Consider the tonehole in �gure 5.6a. With the hole partially closed o�, we assume that

the tonehole volume can e�ectively be divided into an \open part" V
(o)
b , that acts as an

inertance, and a \closed part" V
(c)
b , that acts as a compliance. These volumes operate in

parallel, thus the net shunt impedance is formulated:

Zs =
j!L

1� !2LC : (5.18)

The electrical network representation of the shunt impedance is depicted in �gure 5.6b. If

we de�ne the ratio between open and total hole volume g = V
(o)
b =Vb, then the compliance

and inertance are given by:

C = (1� g) � �b
2t
(c)
e

�c2
; (5.19a)

L = g�1 � �t
(o)
e

�b2
; (5.19b)

where t
(c)
e and t

(o)
e are de�ned as for the simpli�ed tonehole model (see section 5.2.1). The

tonehole state is controlled through the parameter g. When g = 1, the compliance is

zero, and its impedance value goes to in�nity, thus the model behaves as a pure inertance,

which corresponds to a fully opened state. When g = 0, the inertance and its impedance

value go to in�nity, and the model thus behaves as a pure compliance, which corresponds

to a fully closed state. Any value for g in between zero and one represents a partially

closed state: sweeping g in time from one to zero corresponds to the process of closing a

tonehole, and sweeping g from zero to one corresponds to opening a tonehole.

It must be noted that there is a complication with the parametrisation of the model

formulated above: the inertance de�ned in (5.19) uses the reciprocal of g, which excludes

setting g fully to zero without running into numerical problems. Therefore it is more

convenient to formulate the shunt impedance using the reciprocal of the inertance. Suppose
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Figure 5.7: Equivalent network of a tonehole in a conical bore section.

that the inertance in the fully opened state is indicated with L(o), and the compliance in

the fully closed state is indicated with C(c):

C(c) =
�b2t

(c)
e

�c2
; (5.20a)

L(o) =
�t

(o)
e

�b2
: (5.20b)

The elements of the partially opened hole can then be formulated:

C = (1� g)C(c); (5.21a)

L�1 =
g

L(o)
: (5.21b)

Hence the shunt impedance is formulated:

Zs(!) =
j!

L�1 � !2C
: (5.22)

5.2.3 A Tonehole in a Conical Bore

As seen in section 2.3.4, a conical section may be modelled as a cylindrical waveguide in

combination with two conicity inertances and an ideal transformer (see �gure 2.17). We

may consider a conical bore with a tonehole as a system of two conical sections separated

by a tonehole. An equivalent network of this system may be derived by dividing the

equivalent networks of the two bore sections by the shunt impedance of the hole (see

�gure 5.7). We note this formulation does not require that the conical taper on the left

side of the hole equals the taper on the right side.
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Figure 5.8: Wave digital modelling scheme for discrete-time simulation of the partially open hole.
G1, G2 and G3 are the port-admittances.

5.3 The Wave Digital Tonehole Model

5.3.1 Discretisation of the Partially Open Hole Model

The partially open hole model is a lumped element model that can be simulated in the

discrete-time domain by means of wave digital �lter (WDF) techniques. As discussed in

sections 3.3 and 3.4, the �rst step in a WDF derivation is the decomposition of the acoustic

variables P and U into wave variables (equation (3.60)). Applying this decomposition to

the partially open-hole network in �gure 5.6b results in the system depicted in �gure 5.8.

In this scheme, the three-port scattering junction models the wave interaction between

the main bore and the tonehole. The scattering equations for such a junction are given in

appendix E. In this case, we have

P�1 = P�2 +W; (5.23a)

P+
2 = P+

1 +W; (5.23b)

P+
3 = P+

1 + P�2 + P�3 +W; (5.23c)

with

W = k1
�
P+
1 � P�3

�
+ k2

�
P�2 � P�3

�
; (5.24)

where k1 and k2 are the junction coeÆcients. The value of these depend on the port-

admittances of the acoustic ports:

k1 =
G1 �G2 �G3

G1 +G2 +G3
; (5.25a)

k2 =
G2 �G1 �G3

G1 +G2 +G3
; (5.25b)
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where G1 and G2 are the port-admittances at the left and the right side of the tonehole

respectively, and G3 is the port-admittance of the hole. The way in which the port-

admittances G1 and G2 are de�ned depends on whether the bore is cylindrical or conical.

In the case of a cylindrical main bore, the hole is directly attached on either side to a

distributed element, thus the port-resistances G1 and G2 must in that case be set equal to

the main bore characteristic impedances at the left and right side of the bore, respectively.

It is uncommon for a tonehole to be exactly placed at a discontinuity in diameter, thus

usually we have G1 = G2 = Y0, where Y0 = 1=Z0 is the characteristic admittance of the

main bore. In the case of a conical main bore, the hole is connected directly on either side

to a lumped element (see �gure 5.7), thus the port-admittances are in that case arbitrary.

The port-admittance G3 is arbitrary for either a cylindrical or a conical main bore.

What remains is the derivation of the wave digital re
ectance R
0

s(z) that models the

shunt impedance. The continuous-time \re
ectance" R
0

s(!) is:

R
0

s(!) =
Zs(!)�R3

Zs(!) +R3
; (5.26)

where R3 = 1=G3. Note that unless we set R3 = (�c)=(�b2), R
0

s(!) does not correspond to

the actual physical tonehole re
ectance. Substitution of (5.18) and applying the bilinear

transform gives the \wave digital re
ectance" of the hole:

R
0

s(z) = � �1 + �2z
�1 + z�2

1 + �2z�1 + �1z�2
: (5.27)

This is a digital allpass �lter with coeÆcients:

�1 =

�
L�1 + �2C

��G3�

(L�1 + �2C) +G3�
; (5.28a)

�2 =
2
�
L�1 � �2C

�
(L�1 + �2C) + G3�

; (5.28b)

where � = 2=T is the bilinear operator, and T is the sample period. In order to avoid a

delay-free loop, the port-admittance G3 must be chosen such thatR
0

s(z) is non-immediate5.

From equations (5.27) and (5.28) we can see that R
0

s(z) is non-immediate only if �1 = 0.

5By \non-immediate", we mean that the inverse Fourier transform r
0

s(t) has a zero instantaneous

re
ection, i.e. r
0

s(0) = 0. See section 3.3.1 for a detailed explanation.
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Figure 5.9: Plane-wave re
ectance of a tonehole.

It follows that we must set

�
L�1 + �2C

�� G3 � = 0

or

G3 =
L�1 + �2C

�
: (5.29)

If we substitute (5.29) into (5.28), the wave digital re
ectance becomes:

R
0

s(z) = �z�1
�
�2 + z�1

1 + �2z�1

�
; (5.30)

with

�2 =
L�1 � �2C

L�1 + �2C
: (5.31)

This digital �lter can be implemented using only one multiplication:

P+
3 = ��2

�
P�3 z

�1 + P+
3 z

�1
�� P�3 z�2 (5.32)

The three-port equations in (5.23) in combination with (5.32) form the complete set of

equations of the discrete-time version of the lumped element mode of the partially open

tonehole. We will refer to this as the wave digital tonehole model.

In order to investigate the discretisation e�ects, the plane wave re
ectance of the par-

tially open hole was computed for a range of tonehole states (g = 0; 0:1; 0:2; 0:3; :::; 1:0).

The plane wave re
ectance is the quotient of the re
ected and the incident pressure wave

in the main bore, assuming anechoic main bore terminations (see �gure 5.9). The resulting

plane wave re
ectance magnitude responses, as computed in continuous- and discrete-time

are shown in �gure 5.10. As can be expected, the discrete-time model closely approxi-

mates the continuous-time model at the lower frequencies. However, at the high end of the

frequency-spectrum, the discrete response strongly deviates from the continuous response.

It can be seen in �gure 5.10 that the wave digital tonehole model has unity amplitude

at f = fs=2 whenever the compliance is not zero. As a result, the model strongly over-

estimates the re
ectance at frequencies near the Nyquist frequency. Fortunately, this is
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Figure 5.10: Plane-wave re
ectance of the continuous-time model (top) and discrete-time
model (bottom) of a partially open hole, as computed for a range of tonehole states (g =
0; 0:1; 0:2; 0:3:::; 1:0).

usually not a problem in wind instrument modelling, because the boundary and radiation

losses signi�cantly attenuate the higher frequencies such that the overall bore re
ectance

maintains lowpass. Therefore this de�ciency does not disturb the sound generation mech-

anism.

5.3.2 Application to a Six-Hole Flute

In this section we model a full tonehole lattice in discrete-time, and compare it with Keefe's

transmission-line model in terms of the re
ection function. In [76], Keefe's tonehole model

was tested by computing the re
ection function of a six-hole 
ute for a number of di�erent

�ngerings, using the transmission-line matrix formulation. We computed the re
ection

function of the same 
ute bore (using transmission-line matrices), but in a slightly di�erent

way. Firstly, the boundary losses in the main bore were not included. This was done to

ensure that the comparison is not \clouded" by discrepancies introduced by loss-�lters, so

that the focus of the comparison is �rmly on tonehole modelling. Secondly, the equivalent

length of the 
ute excitation mechanism was not taken into account in our computations.

As a result of these two di�erences, the amplitude- and time-scale of the re
ection functions

deviate somewhat from the ones originally published by Keefe in [76].

The re
ection function was also computed using a discrete-time model in which each of
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Figure 5.11: Wave digital model of a cylindrical bore with N toneholes. Each line unit indicates
a delay-line plus a fractional delay �lter, and each WD hole block indicates a wave digital tonehole
structure. RL(z) is the open-end re
ectance �lter.
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Figure 5.12: Six-hole 
ute (discrete-time) re
ection function (lowpass �ltered) for the note B4

(top) and G4 (bottom), as computed using Keefe's transmission-line model (solid) and the wave
digital model (dashed). The sample rate is 44:1kHz. Note that in both cases, the di�erence between
the curves is barely visible.
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the holes is modelled with a wave digital tonehole model, i.e., a \wave digital model" of the


ute bore. The cylindrical bore sections in between the holes are modelled as delay-lines

in cascade with third-order Lagrange interpolation �lters, and the open-end re
ectance

is modelled with a 4th-order IIR �lter. Figure 5.11 shows the modelling structure for a

cylindrical bore with N toneholes. Lowpass �ltering was applied to both re
ection func-

tions in order to focus the comparison on the lower frequency-range. A linear-phase FIR

lowpass �lter with a 5kHz cut-o� was used for this purpose. Figure 5.12 shows the re
ec-

tion functions computed for �ngerings corresponding to the notes B4 and G4, respectively.

The comparisons clearly indicate that the wave digital model forms a remarkably close

low-frequency approximation of Keefe's transmission-line model.

5.3.3 Sound Radiation

In the formulation of the partially open hole, it is assumed that there are no radiation

losses associated with the tonehole. This corresponds to assuming that the ambient air

does not provide any resistance to the air motion within the tonehole, even if the tonehole

is partially or fully opened. This assumption only holds approximately at low frequencies.

At higher frequencies, the air just outside the hole is disturbed by the vibrational motion

of the \open part" of the tonehole. Hence at high frequencies there is a conversion of

acoustical energy from inside the tonehole to the outside environment (i.e., high-frequency

components are radiated).

In order to get some insight into the amount of radiation losses at higher frequencies,

we may employ Scavone's smooth extension of the Levine and Schwinger formulation of

an open-ended tube6. Figure 5.13 shows the full audio rate bandwidth amplitude response

of the open-end re
ectance, calculated for a range of di�erent tonehole radii.

Given that the radiation losses are small at the lower frequencies (less than 1dB up

to 5kHz for a hole radii smaller than 5mm), it follows that the low-frequency components

of the acoustic pressure P3 just underneath a tonehole are closely approximated with the

wave digital tonehole model. Hence we may deduce from P3 the low-frequency components

of the radiated pressure. The problem of deducing the higher frequency components of

the radiated pressure is then treated separately. Following the approach in [22, 26, 52],

we divide the problem into modelling the radiation below and above the tonehole lattice

cut-o� frequency (fc). Benade [22] de�nes the cut-o� frequency for a lattice of equally

spaced and equally sized toneholes as:

fc = 0:11 c

�
b

a

� �
1

s te

�
; (5.33)

6See section 2.2.5 for a brief explanation of this open-end formulation.
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Figure 5.13: Open-end re
ectance amplitude response for a range of tonehole radii (a =
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where the distance between the holes is 2s. His measurements show that the cut-o� of a

real woodwind instrument is reasonably constant, despite that fact that the spacing and

sizes vary for each hole.

Low-Frequency Components (f � fc)

Because only the \mass-like" motion of the open part of the tonehole volume disturbs the

ambient air (i.e., the \spring-like" motion of the closed-part of the tonehole volume does

not contribute to the sound radiation), the 
ow Ue exiting the hole equals the 
ow across

the inertance:

Ue =
P3
j!L

: (5.34)

Because a woodwind tonehole is generally small, it may be considered as an isotropic

source [52]. Given a source-strength Ue, the radiation pressure at a distance r from such

a source is:

Prad(r) =

�
j!�

4�r

�
Ue e

�jkr ; (5.35)

where k = !=c is the free space wave velocity. By combining (5.34) and (5.35), we can

compute the pressure radiated from a woodwind tonehole as:

Prad(r) =
� �

4�rL

�
P3 e

�jkr : (5.36)

Note that the frequency term j! has disappeared in the �nal result. The term e�jkr

represents a pure time-delay (i.e., the time it takes for a radiated pressure wave to reach

the \listening point"). Thus, the (low-frequency) radiated pressure at any distance from

the tonehole can be computed by simply scaling and delaying the bore pressure P3 just
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underneath the tonehole. We can incorporate this in the wave digital tonehole model by

formulating the digital domain version of (5.36) as:

Prad(r) =
�g
r

�
� P3 z

�N HFD(z); (5.37)

where z�N represents a delay-line, HFD(z) indicates a fractional delay �lter and � =

Sb=(4�t
(o)
e ) is a constant. It can be seen from (5.37) that the amplitude of the radiation

pressure decreases with distance (r) and increases with open tonehole surface ratio (g).

Furthermore, since the delay and fractional delay �lter are essentially allpass, the radiation

pressure apparently has, at least at low frequencies, the same frequency content as the

bore pressure P3.

High-Frequency Components (f > fc)

As mentioned before, the lumped element model is inaccurate at higher frequencies. More

precisely, the open-end resistance is not taken into account, thus all the internal bore

variables (such as P3) do not have the proper high-frequency content. Moreover, for low-

frequency components we have assumed that the radiation is isotropic (i.e., the 
ow spreads

out evenly in all directions). This assumption is not valid at high frequencies, because the

e�ects of directivity need to be taken into account. Possible solutions to the problem of

accurately modelling the high-frequency components are discussed in section 9.2.3.

5.4 Conclusions and Future Work

In this chapter we have seen that it is possible to accurately model the re
ection function

of a cylindrical woodwind bore by means of an eÆcient travelling-wave based discrete-

time model. The toneholes in this model are represented with wave digital tonehole units,

which use only twomultiplications per sample (one for the three-port scattering and one for

the re
ectance �lter). The wave digital tonehole model ful�ls the essential requirements

for application in the context of musical sound synthesis. Tonehole models that were

previously developed in the context of digital waveguide modelling do not meet one or

more of these requirements. For example, the \model for an open �nger hole" presented

in [151] does not accurately represent the closed-hole state. Various other models, such

as the \two-port tonehole model" in [122] and its \one-�lter version " presented in [136],

do not allow for dynamic control of the tonehole state, and are therefore not useful in

the case where musical control is required. The \three-port tonehole model" presented in

[121] closely approximates the established theories on tonehole acoustics, allows dynamical

control of its state and is also computationally eÆcient. However, whereas in the wave

digital tonehole model the tonehole length can be chosen freely (the only restriction being
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that it must be larger than zero), the three-port model is only computable for tonehole

lengths that correspond to a round-trip time of at least one delay. This is because the

model is based on a distributed modelling approach, i.e., the tonehole is modelled as a

subsidiary waveguide. For an audio sampling frequency fs = 44:1kHz and a wave velocity

c = 342m/s, the tonehole length is thus restricted to a minimum of t = c=(2fs) � 3:8mm.

This excludes the possibility of simulation of woodwind instruments that contain holes of

shorter length (such as the saxophone), unless the sample rate is increased. Furthermore,

the three-port model requires the inclusion of a fractional delay �lter for simulation of a

tonehole of fractional delay length. In the wave digital modelling approach, the length of

the hole can be adjusted without the use of additional �lters. Another drawback is that

the three-port tonehole model has not (yet) been formulated in such a form that it can

be used for modelling toneholes in conical bores. The three-port tonehole model has one

advantage though: it is more suitable for simulation of large toneholes. This is because

the lumped element approach is valid only when the tonehole length is suÆciently short to

allow the time delay for propagation down to the end of the hole and back to be neglected.

A useful improvement to the wave digital tonehole model could be to include some form

of resistance. In the revised edition of [101], Nederveen includes a non-linear resistive term

in the tonehole shunt impedance. Such a resistive term could explain particular phenomena

observed with very small holes, and may need to be included for accurate simulation of

register holes.
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Chapter 6

Wave Digital Modelling of

Woodwind Bores

A woodwind bore may be considered as a succession of conical and cylindrical bore sections

with a set of open or closed holes in their sides [94]. Techniques for the simulation of wave

propagation in cylindrical and conical sections were discussed in chapter 4, and methods

for discrete-time modelling of woodwind toneholes were discussed in chapter 5. These

techniques can be combined for discrete-time simulation of complete woodwind bores.

This approach is straight-forward in the case of a cylindrical main bore, but application to

tapered bore systems results in realisibility problems. That is, delay-free loops arise when

connecting a digital waveguide model of a conical section to a wave digital tonehole model,

because both the taper junction and the tonehole model have immediate re
ectances in

this case. Hence an alternative discrete-time formulation of the conical junction has to be

developed in order to overcome this problem.

As pointed out by Benade [24], a junction of two conical sections can be modelled as a

parallel inertance. This raises the possibility of applying wave digital �lter (WDF) tech-

niques for digital simulation of wave scattering at a junction between two conical sections.

Unlike digital waveguide modelling techniques, wave digital modelling techniques allow

for the adjustment of the port-resistance values such that delay-free loops are avoided. In

section 6.1, we discuss how this approach can be used in woodwind bore modelling.

The remaining part of this chapter is organised as follows. In section 6.2, we demon-

strate the wave digital modelling approach with two example applications, and in the �nal

section of the chapter (section 6.3), we compare the wave digital approach to the \multi

convolution approach".

133
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Figure 6.1: Network representation of a junction of two conical sections (a), and the equivalent
network (b).

6.1 The Wave Digital Junction

6.1.1 A Junction of Two Conical Sections

An equivalent network of two coupled conical bore sections can be constructed by attaching

two networks of the kind depicted in �gure 2.17. A junction of two conical sections is thus

described with a network which has the right inertance (L1 = �(�r1)=S1) of the left cone
in parallel with the left inertance (L2 = (�r2)=S2) of the right cone (see �gure 6.1a), where

r1 and r2 are the apex distances of the left and the right cone, respectively. The junction

network is equivalent to the single inertance network in �gure 6.1b, where the \equivalent

junction inertance" is:

Lj =
L1L2
L1 + L2

=
� r1 r2

r1 S2 � r2 S1 : (6.1)

This network can be simulated in the digital domain by means of WDF techniques. The

WDF structure is derived in a fashion similar to the WDF structure for simulation of a

parallel compliance in section 3.3.2, and takes the form as depicted in �gure 6.2. The

\inertance re
ectance" is:

Rinr(!) =
j!Lj � G�13
j!Lj + G�13

: (6.2)

Discretisation of (6.2) via the bilinear transform (BT) gives the wave digital re
ectance:

Rinr(z) =
�Lj

�
1�z�1

1+z�1

�
�G�13

�Lj

�
1�z�1

1+z�1

�
+G�13

; (6.3a)

=
�� � z�1
1 + �z�1

; (6.3b)

with the coeÆcient

� =
1� �LjG3

1 + �LjG3
: (6.4)
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Figure 6.2: WDF modelling structure for digital simulation of the parallel inertance network in
�gure 6.1b. The port-admittances are indicated with G1, G2 and G3.

In order to ensure that the inertance-loop in �gure 6.2 is not delay-free, the wave digital

re
ectance Rinr(z) has to be non-immediate, thus the coeÆcient � has to be zero. It

follows that the port-admittance has to be chosen

G3 =
1

�Lj
: (6.5)

After substitution of (6.5) into (6.3), it is found that the wave digital re
ectance reduces

to a delay plus a change of sign:

Rinr(z) = �z�1: (6.6)

The three-port scattering junction in �gure 6.2 is a form of a branching junction, for

which the scattering equations are given in equations (E.8) in appendix E. Combining

these three-port equations with (6.6) gives the �nal set of equations for the wave digital

(WD) junction:

P�3 = �P+
3 z�1;

W = k1
�
P+
1 � P�3

�
+ k2

�
P�2 � P�3

�
;

P�1 = P�2 +W;

P+
2 = P+

1 +W;

P+
3 = P+

1 + P�2 + P�3 +W;

(6.7)

with

k1 =
G1 �G2 �G3

G1 +G2 +G3
; (6.8a)

k2 =
G2 �G1 �G3

G1 +G2 +G3
: (6.8b)

The WD junction signal 
ow structure is depicted in �gure 6.3. We note that only two
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Figure 6.3: Signal 
ow structure of the wave digital junction.

multiplications are required for implementation of this conical junction model, which is

less than required for implementation of the digital waveguide junction model discussed

in section 4.3.2. From a mathematical point of view, the WD junction is equivalent to

the digital waveguide junction discretised with the BT. From a digital signal processing

perspective, the two are not equivalent, because di�erent �nite precision realisations of

mathematically equivalent discrete-time systems have di�erent properties due to signal

quantisation e�ects [109]. However, no signi�cant di�erences between the two forms were

found in the simulations results.

6.1.2 A Conical Section Connected to a Lumped Element

Consider the network in �gure 6.4. This network is the electrical equivalent of a conical

section that is terminated by a load impedance ZL(!). The value of the parallel inertance

(2) is Lj = �(�r)=S, where r is the distance from the cone apex to the end of the cone,

and S is the wave area at the cone end. Figure 6.5 shows the discrete-time model of

this system. The scaling factors that model the ideal transformer have been omitted, and

viscothermal losses have not been taken into account. The term R
0

L(z) indicates a digital

�lter approximation of the re
ectance

R
0

L(!) =
ZL(!)�R2

ZL(!) +R2
; (6.9)

where R2 is the port-resistance as de�ned for the travelling waves p+2 and p�2 . We note that

R
0

L(!) equals the actual physical re
ectance of the lumped element only if we set R2 equal

to the characteristic impedance (�c)=S at the cone end. If the taper junction modelled by
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Figure 6.4: The equivalent network of a truncated cone that is terminated by a lumped element
with impedance load ZL.
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Figure 6.5: Discrete-time model of a cone terminated by a lumped element. The J1 and J2 units
indicate conical junctions, the z�N units indicate delay-lines,and the FD units represent fractional
delay �lters. The grey arrow indicates the loop that becomes delay-free when the junction (2) is
modelled as a digital wvaeguide junction or a normal WD junction.

inertance (2) is simulated in discrete-time by means of a DWG junction, or a \normal"

WD junction, then the system would exhibit a delay-free loop, because both the junction

and the lumped element have an immediate re
ectance. One way to solve this problem

would be to lump the conical junction (2) together with the lumped element re
ectance,

and approximate the resulting spherical wave re
ectance with a digital �lter. However, in

many applications the lumped element is connected to another waveguide section on the

right-hand side, in which case the lumped re
ectance becomes rather complex. Therefore

we prefer an approach in which the lumped element is modelled separately from the

conicity inertance. In order to avoid a delay-free loop, we have to model the inertance (2)

as a special wave digital junction that is designed such that its re
ectance in the right-

going direction is non-immediate. We will therefore refer to it as a \WD-r junction", where

the letter r indicates that the junction has a non-immediate re
ectance at its right-hand

side. Similarly, in the case of modelling a lumped element attached to the left side of the

cone, a WD-l junction (that has a non-immediate re
ectance in the left-going direction)
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is required. The signal 
ow structures of the WD-r and WD-l junctions are depicted in

�gure 6.6. The derivation of these junction structures is given below.

The WD-r Junction

The �rst few steps in the derivation is the same as in the case of the normal WD junction.

That is, the basic structure is again a three-port junction (see �gure 6.2), with an inertance

re
ectance

Rinr(!) =
j!Lj � G�13
j!Lj + G�13

: (6.10)

attached to one of its ports (see �gure 6.2). After applying the BT, we �nd that in order

to avoid a delay-free inertance-loop, the port-admittance G3 should relate in the same way

to the inertance as for the normal WDF junction, i.e.:

G3 =
1

�Lj
: (6.11)

The wave digital re
ectance again reduces to a negative delay. Also, the same three-port

equations apply here. Written in the general form of (E.5), these are:

2
64
P�1
P+
2

P+
3

3
75 =

2
64

G1�G2�G3
G1+G2+G3

2G2
G1+G2+G3

2G3
G1+G2+G3

2G1
G1+G2+G3

�G1+G2�G3
G1+G2+G3

2G3
G1+G2+G3

2G1
G1+G2+G3

2G2
G1+G2+G3

�G1�G2+G3
G1+G2+G3

3
75
2
64
P+
1

P�2
P�3

3
75 : (6.12)

Because the cone is terminated by a lumped element, we may choose an arbitrary value

on the side it is attached to. In the case of a termination load on the right side, this is

the port-admittance G2. The cone itself is a distributed element, thus the value of the

port-admittance G1 has to be set to the local characteristic admittance Y1 = S1=(� c). It

can be seen from (6.12) that the instantaneous re
ection of the wave P�2 is (�G1 +G2 �
G3)=(G1+G2+G3). In order to derive a realisable structure, this instantaneous re
ection

should be zero, thus we must set

G2 = G1 + G3: (6.13)

After substitution of (6.13) into (6.12), the three-port equations become:

2
64
P�1
P+
2

P+
3

3
75 =

1

G1 + G3

2
64

(�G3) G1 +G3 G3

G1 0 G3

G1 G1 +G3 (�G1)

3
75
2
64
P+
1

P�2
P�3

3
75 : (6.14)

If we de�ne the junction coeÆcient
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Figure 6.6: Signal 
ow structure of the WD-l and the WD-r junction.

kj = � G3

G1 + G3
; (6.15)

the three-port equations can be written:

P�1 = P�2 + kj [P
+
1 � P�3 ]; (6.16a)

P+
2 = P+

1 + kj [P
+
1 � P�3 ]; (6.16b)

P+
3 = P�2 + [P+

1 � P�3 ] + kj [P
+
1 � P�3 ]: (6.16c)

After some further algebra, the �nal WD-r equations can be written as:

P�3 = �P+
3 z�1;

W1 = P+
1 � P�3 ;

W2 = kjW1;

P�1 = P�2 +W2;

P+
2 = P+

1 +W2;

P+
3 = P�2 +W1 +W2:

(6.17)

The WD-l Junction

The signal 
ow structure of the WD-l junction can be directly obtained from the signal


ow of the WD-r junction. That is, one can simply interchange the incident waves (p+1
and p�2 ) and the re
ected waves (p�1 and p+2 ). The port-admittance G2 now has to be set

equal to the local characteristic admittance Y2 = S2=(� c), and the port-admittance G1

has to be set G1 = G2 + G3 in order to avoid a delay-free loop. The junction coeÆcient
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in this case is:

kj = � G3

G2 + G3
: (6.18)

The �nal set of equations for the WD-l junction is:

P�3 = �P+
3 z�1;

W1 = P�2 � P�3 ;

W2 = kjW1;

P�1 = P�2 +W2;

P+
2 = P+

1 +W2;

P+
3 = P+

1 +W1 +W2:

(6.19)

The de�nition of the re
ectance R
0

L(z) of the lumped elements in �gures (6.5) and

(6.6) depends on the value of the port-resistance. Given a lumped element with impedance

ZL(!) and a port-resistance R, this \wave digital re
ectance" is designed to approximate

the re
ectance:

R
0

L(!) =
ZL(!)� R

ZL(!) + R
: (6.20)

We note that this re
ectance only corresponds to the actual physical re
ectance in the

case where the port-resistance equals the local characteristic impedance.

6.1.3 Stability Properties

For certain types of conical junctions, the junction inertance Lj is negative. From equa-

tions (6.5) and (6.11) it can be seen that the port-admittance G3 will then also be nega-

tive. The use of negative port-admittances normally leads to an unstable WDF structure

[51, 87]. For a normal WD junction (inertance given by (6.1)), the inertance remains

positive for
S2
r2

>
S1
r1
; (6.21)

which is exactly the same as the condition under which the junction �lter associated with a

DWG junction remains stable (see equation (4.41)). The normal WD junction, the WD-r

junction, and the WD-l junction are all junctions where the frequency-dependent element

is discretised using the BT. It can be expected that bore simulations formulated with such

wave digital junctions have similar stability properties to the DWG junction formulated

using the BT 1. This was tested, and indeed it was found that conical bore simulations using

wave digital junction remain stable only if viscothermal losses are excluded; simulations

with inclusion of such losses can usually only be employed for the calculation of the

(truncated) system impulse response.

1The stability properties of conical bore simulations using DWG junctions are discussed in section 4.4.
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Figure 6.7: Example bore dimensions (After Mart��nez et al. [94]).

6.2 Example Applications

In one of the classical articles on time-domain modelling of acoustical bores, Mart��nez et

al. [94] demonstrate the use of the multi-convolution method with a number of example

applications. In this section we demonstrate the use of the wave digital modelling approach

using the bore con�gurations of the �rst two examples in [94].

6.2.1 The Cylinder-Cone System

In the �rst example (�gure 7 in [94]) we simulate a conical section attached to a short

cylindrical section (see �gure 6.7a). This bore con�guration also served as an example in

[19]. The computations in both references result in an impulse response that corresponds

to the inverse Fourier transform of the input impedance of the bore, i.e., what is de�ned

as \Green's function" in section 3.1.

In the wave digital modelling approach, wave propagation in cylindrical or conical

sections is simulated in the same way as in digital waveguide modelling (see chapter 4).

That is, propagation in the bore from one end to the other is simulated with a delay-line

in cascade with two digital �lters. In this case we used third-order Lagrange interpolation

�lters for modelling fractional delay lengths and fourth-order IIR �lters to approximate

the viscothermal losses of each bore section. Tubular junctions are modelled with the

wave digital junction model presented in section 6.1.1. The open-end re
ectance of the

bore in section 6.7a can be considered as a lumped element. As explained in section 6.1.2,

the re
ectance at the end of the cone can therefore be simulated with a WD-r junction

in combination with a re
ectance �lter. Hence the complete wave digital model takes the

form as depicted in �gure 6.8. The wave digital re
ectance R
0

L(z) was implemented using

a third-order IIR �lter.

In order to compute Green's function, a volume 
ow input pulse is injected into the

system (i.e., u(t) = Æ(t)), and the pressure p(t) at the input is obtained by summing the
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Figure 6.9: Discrete-time Green's function of the bore depicted in �gure 6.7a. The sample rate is
44:1kHz.
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waves p+0 and p�0 at each time-step. Figure 6.9b shows Green's function as calculated with

the wave digital model. Green's function in Figure 6.9a was computed by taking the inverse

Fourier transform of a frequency-domain computation using transmission-line matrices2.

These time-domain signals can also be compared by ear3. We note that while the bore

con�guration is quite similar to the truncated bore system simulated in section 4.4.2, the

error due to not using the \lossy" propagation constant in the junction formulation is

signi�cantly smaller in this case.

6.2.2 The Cone with Open Tonehole

The second example application, the bore con�guration (�gure 9 in [94]) consists of a

conical section with an open hole in its side (see �gure 6.7b). Discretisation is slightly

more complicated than in the previous example, because we have to model a tonehole

discontinuity. In the wave digital modelling approach, this is done by splitting the cone

into two separate sections, and modelling the tonehole as a lumped element placed in

between those sections. The open hole is simulated in discrete-time with the wave digital

tonehole model discussed in chapter 5. Delay-free loops can be avoided in the system by

using a WD-r junction on the left-hand side and a WD-l junction on the right-hand side

of the tonehole, as depicted in �gure 6.10. Because in this case the bore is immediately

conical at its entry, a WD-l junction is required at this point. The length-corrections

associated with the tonehole are taken into account by reducing the length of the bore on

either side of the hole. The losses, fractional delay-lengths, and the open-end re
ectance

are modelled in the same way as in the �rst bore example.

Green's functions of the cone with open hole, as computed with the transmission-line

model and with the wave digital model, are depicted in �gure 6.11. The main deviation

between the two curves stems from the di�erences with respect to tonehole modelling. As

seen in chapter 5, these di�erences occur mainly at high frequencies, and are therefore of

secondary importance because (1) the transmission-line model employs Keefe's formulation

of the tonehole shunt and series impedance, which have been veri�ed experimentally only

up to 5kHz, and (2) high frequencies have a negligible in
uence on the sound generation

mechanism. The fact that there are only very small di�erence between the transmission-

line model and the wave digital model can also be experienced through audio4.
2See section 2.3 for frequency-domain computations with transmission-line matrices.
3Sound examples (ex1) and (ex2) in appendix K.
4Sound examples (ex3) and (ex4) in appendix K.
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Figure 6.11: Discrete-time Green's function of the bore depicted in �gure 6.7b. The sample rate
is 44:1kHz.
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6.3 Comparison with the Multi Convolution Approach

Some decades ago, Mart��nez et al. [94] developed methods for time-domain modelling of

woodwind bores. In their original \multi convolution algorithm", the spacing between

discontinuities is constrained to be a multiple of the spatial sampling interval. This lim-

itation was later removed by Barjau et al. [19]. There are strong similarities between

the wave digital modelling approach and the multi convolution approach. Firstly, the

approaches employ the same modelling framework. That is, the response of a woodwind

bore is computed by explicitly simulating the transmission, re
ection and propagation of

pressure waves in the bore. Secondly, many of the typical bore discontinuities (such as

toneholes and taper changes) are based on equivalent continuous-time models. In this

section, we compare the two approaches in terms of the re
ection, transmission and prop-

agation functions that are employed in the multi-convolution approach.

6.3.1 Calculation of Re
ection and Transmission of Waves with the

Time-Interpolated Convolution Method

In the multi convolution approach, the re
ection and transmission functions are always of

the form [19] (t � 0):

f(t) = a0Æ(t) + a1e
b1t + a2e

b2t + a31e
b3t + a32te

b3t; (6.22)

where ai and bi are coeÆcients. These functions are convolved with pressure waves by

means of the time-interpolated convolution method (TICM). The TICM computes a re-


ected or transmitted output-signal y(t) by means of a convolution of the input signal x(t)

with the function f(t):

y(t) = f(t) � x(t)

=

+1Z
0

f(�) x(t� �) d�: (6.23)

This convolution is determined analytically, usually by assuming a linear evolution of the

input-signal between successive discrete-time instants [94, 19].

6.3.2 Modelling First-Order Re
ectance and Transmittance Filters

The last two terms in equation (6.22) only apply when modelling an open-end re
ectance

discontinuity (see section 6.3.3). Hence for all other types of discontinuities, the re
ection

and transmission functions are described as the sum of a Dirac pulse and two exponential
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functions of the type

r(t) = a ebt; (6.24)

where the Dirac pulse part is usually computed separately. For example, the convolution

of x(t) with a function of the form

f(t) = Æ(t) + a ebt; (6.25)

is computed

y(t) = x(t) + a ebt � x(t): (6.26)

Re
ection and transmission functions of this type are obtained by taking the inverse

Fourier transform of a frequency-domain expression. For example, the result in equation

(6.24) is obtained by taking the inverse Fourier transform of the frequency-domain function

F (!) =
a

j! � b : (6.27)

This frequency-domain expression corresponds to the transfer function of a one-pole �lter

element. Functions of this type also in appear in the underlying models of the wave digital

modelling approach. In appendix I we show that for simulation of bore discontinuities of

the types listed below, the two approaches are in fact based on equivalent continuous-time

models:

� diameter and taper discontinuities

� open- and closed-hole discontinuities

� closed-end discontinuities

However the approaches are di�erent in the way these �rst-order re
ectances and trans-

mittances are discretised. In the wave digital modelling approach, the bilinear transform

(BT) is used, whereas a recursive formulation of the TICM is applied in the multi convo-

lution approach [94, 19]. In appendix G we show that both these discretisation methods

amount to passing the input-signal through a �rst-order digital �lter. Although there is

a di�erence in the way the �lter coeÆcients are formulated, there tends to be a negligible

di�erence between the responses obtained using the BT and using the TICM. Hence we

may conclude that for discrete-time modelling of woodwind bore discontinuities that can

be represented by re
ection and transmission functions of the exponential type (or a sum

of such functions and a Dirac pulse), the multi convolution approach and the wave digital

modelling approach are practically equivalent. There are two remaining types of functions

that appear in the multi convolution approach:

� the re
ection function associated with an open-end discontinuity.
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jL
LZ

Figure 6.12: Equivalent network of the open end of a conical section. The conicity inertance is
Lj = �(�r)=(S), where r is the apex distance and S is the cross-section at the open end. ZL is
the open-end radiation impedance.

� conical bore propagation functions.

These are discussed in the next two sections.

6.3.3 The Open-End Re
ection Function

Mart��nez and Agull�o [93] base their open-end re
ectance formulation on an open-end

radiation impedance formula by Morse [97]:

ZL(!) = Z0 (�0 + j�0); (6.28)

where �0 is the resistive and �0 the reactive part of the impedance5 . For application

within the multi convolution approach, they employed an \ad hoc" formulation that was

designed to approximate the inverse Fourier transform of the corresponding (spherical

wave) re
ectance:

r(t) � ��(t)�2e te��e t; (6.29)

with

�e =
c

2

�
0:787 e

a
� 1

r

�
: (6.30)

where a and r are the radius and apex distance at the open end. It can be shown that

computing the convolution of r(t) with a pressure wave signal by means of a recursive

formulation of the TICM amounts to passing the pressure wave through a second-order

digital �lter with a (double) pole at z = e��eT .

The wave digital formulation of the open end is based on a conicity inertance in par-

allel with the open-end radiation impedance ZL(!) (see �gure 6.12). In principle, any

formulation of ZL(!) can be used. As explained in section 6.1.2, the conicity inertance

is modelled with a WD-r junction. The port-resistance (R0) is then determined, and we

may derive the re
ectance

R
0

L(!) =
ZL(!)�R0

ZL(!) +R0
: (6.31)

5See [97] or [93] for the formulae for �0 and �0.
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Figure 6.13: Spherical wave open-end re
ection function as calculated with various di�erent
methods. Left: the inverse Fourier transform of the (spherical wave) re
ectance according to
Morse's frequency-domain formulation (solid, black), the \ad-hoc" formulation (solid, grey) and
its discrete-time model using the TICM (dashed). Note that the latter two almost entirely overlap.
Right: the inverse Fourier transform of the (spherical wave) re
ectance according to the Levine
and Schwinger formulation (solid), and the wave digital formulation (dashed).

This re
ectance is then approximated with a digital �lter. Scavone's extension of the

open-end re
ectance formulae by Levine and Schwinger6 was used as our frequency-domain

formulation of the open-end re
ectance. For digital approximation of R
0

L(!), a third-order

IIR �lter was used.

In order to compare the two approaches, we computed the (spherical wave) re
ection

function of the open end of a cone with a = 50mm and r = 250mm. These dimensions

are of the same order as those found in woodwind instruments. The e�ective spherical

re
ection function of the wave digital modelling open-end formulation is computed by

simply injecting an input pulse in the wave digital simulation of the network in �gure 6.12.

In the right-hand plot of �gure 6.13, this result is compared to the inverse Fourier transform

of the spherical wave re
ectance according to the open-end formulation by Levine and

Schwinger. In order to compare with the multi convolution approach, we compared the

spherical wave re
ection function as computed with (6.29) to the inverse Fourier transform

of the spherical wave re
ectance according the open-end formulations by Morse in the left

plot of �gure 6.13. Apparently, the \ad hoc" formulation does not approximate its target-

response as closely as does the wave digital model. Whether this matters is questionable,

because the ad hoc formulation possibly results in a more accurate open-end re
ection

function than Morse's formulation. More important to our comparison is that the ad hoc

formulation is \�xed" into a certain form, and its accuracy can therefore not be increased in

any way. In contrast, the wave digital approach allows for using any kind of formulation
6See section 2.2.5 for an explanation of this open-end formulation.
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Figure 6.14: Conical bore geometry.

of ZL(!), and also allows for any order and type of digital �lter approximation of the

corresponding wave digital re
ectance R
0

L(!).

6.3.4 Propagation Functions

Consider the propagation of waves in the conical section depicted in �gure 6.14. In the

multi convolution approach, the propagation of waves in a conical bore section is modelled

by means of a convolution with the bore propagation functions. Mart��nez and Agull�o

[93] implement this method in a form in which the pressure wave on the input-side is

�rst delayed and then convolved with a propagation function �(t) that represents the

viscothermal losses:

p+2 (t) = p+1 (t � L=c) � �+(t); (6.32a)

p�1 (t) = p�2 (t � L=c) � ��(t); (6.32b)

with

��(t) = B� �(t)

�
�

2
p
� t3=2

�
e��

2=4 t; (6.33)

where B� = r2=r1 and B+ = r1=r2. These propagation functions are computed by taking

the inverse Fourier transforms of the frequency-domain functions [94]:

��(!) = B� e�(�+j !=c)L; (6.34)

where � is the viscothermal damping coeÆcient as used by Nederveen (Nederveen1969)

for cylindrical bores. However, as pointed out in [19], this method does not allow accurate

simulation of propagation in bore sections of arbitrary length. As explained in section 4.2,

this problem can be solved by means of fractional delay �lters. Barjau et al. use an alter-

native method, by re-formulating (6.32) such that the propagation-delay L=c is included
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Figure 6.15: Time-domain signals involved in applying the TICM to modelling wave propagation
in a cylindrical bore of length L = 1m and radius a = 5mm. Top: a Dirac pulse (circles) and the
corresponding time-interpolated Dirac Pulse signal (solid). Middle: the continuous-time propaga-
tion function �(t). Bottom: the discrete-time impulse response h(t) as computed with the TICM
(circles) and the convolution product of �(t) with the time-interpolated Dirac pulse signal (solid).

in the propagation functions:

p+2 (t) = p+1 (t) � �+(t� L=c); (6.35a)

p�1 (t) = p�2 (t) � ��(t� L=c): (6.35b)

The convolutions in (6.35) are calculated by means of the TICM, which involves the

calculation of the analytical integrands of the functions �+(t) and ��(t). The TICM

e�ectively samples the continuous-time products of �+(t) and ��(t) convolved with a

linearly interpolated Dirac pulse signal. We demonstrate this for the speci�c case of a

cylindrical bore section of length L = 1m and radius a = 5mm. For a cylindrical section,

the propagation functions are equal (B� = 1). Therefore we denote both propagation

functions with �(t). The continuous-time function �(t � L=c) may be approximated by

evaluation at a very high sample rate fs = 4:41MHz (see �gure 6.15b). Next, an input-

signal that approximates the continuous-time interpolated version of a 44:1kHz Dirac
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pulse signal was generated at the same high sample rate (see �gure 6.15a (solid line)).

The approximation of the continuous-time convolution product of these two signals can

be computed with a straight-forward discrete-time convolution at 4:41MHz, and is plotted

in �gure 6.15c (solid line). The discrete-time response h(t) in �gure 6.15c (circles) was

computed with the TICM at 44:1kHz, using a Dirac pulse signal as the input-signal.

An eÆcient way of implementing the time-interpolated convolution method is by means

of an FIR �lter. That is, we compute the impulse response h(t), and use this series as the

coeÆcients of an FIR �lter implementation of the convolution product. In theory, h(t) is

of in�nite time-length, but in practice it has to be computed for a �nite time-length. The

�nite nature of the convolution-length does not a�ect the accuracy of the simulation much

because in application to musical instrument air columns, h(t) always decays rapidly [19].

For a conical section, the coeÆcients B� may be applied separately or, as explained in

section 4.3.1, may be left out altogether without a�ecting the re
ection function.

In the wave digital modelling approach, the propagation of waves in a conical or cylin-

drical section is implemented with the techniques discussed in chapter 4. That is, the full

propagation-path is simulated with a cascade of a delay-line, a fractional delay �lter, and

a loss-�lter. This cascade is designed to approximate the \ideal" frequency response as

calculated with Keefe's theory for viscothermal losses in acoustical bores (see section 2.2.3

and section 4.1.3). In order to test the approximation error, we computed the frequency

response according to Keefe's theory for a cylindrical bore (of the same dimensions as in

the above example), and compared this to the response of the cascade of a delay-line and

two �lters that is used in the wave digital modelling approach (see the right-hand plot

in �gure 6.16). A 4th-order IIR �lter was used to approximate the viscothermal losses,

and a third-order Lagrange interpolator was employed for simulation of the fractional de-

lay length. For a similar test of the multi convolution approach, we compared equation

(6.34) with the Fourier transform of the impulse response h(t) (see the left-hand plot in

�gure 6.16). Apparently, both approaches result in a lowpass �ltering e�ect. As with the

simulation of the open-end re
ectance, the main di�erence between the two approaches

is the greater freedom within the wave digital modelling approach. That is, any type of

discrete-time approximation of any type of frequency-domain formulation can be employed

within the approach. For example, we may want to apply speci�c �lter design methods in

which emphasis can be put on accuracy at lower frequencies. Accuracy can be improved

by increasing the order of the digital �lter approximations. In the multi convolution ap-

proach, the continuous- and discrete-time formulations are \�xed". The accuracy of the

discrete-time approximation can be improved by increasing the length of the convolution

and by using a higher-order polynomial time-interpolation. While the discrete-time for-

mulation by means of propagation functions already leads to an approximation that is

more accurate at the lower frequencies, it can not be \navigated" towards accuracy in
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Figure 6.16: Magnitude response of the propagation function. Left: Nederveen's frequency-
domain formulation (solid), and its discrete-time approximation using the time-interpolated con-
volution method (TICM). Right: Keefe's frequency-domain formulation, and its discrete-time for-
mulation in the form of a delay-line and two digital �lters in cascade.

speci�c frequency ranges.

6.4 Conclusions

In this chapter we have discussed methods for discrete-time modelling of woodwind bores.

By formulating conical junctions in terms of equivalent inertance networks and discretising

these by means of wave digital �lter techniques, we have developed a novel method for

discrete-time modelling of conical bore systems. The main advantage of the wave digital

modelling approach over the more traditional digital waveguide modelling approach is that

no realisability problems occur when a conical section is directly connected to a lumped

element (such as a tonehole).

Furthermore, we have shown that strong similarities exist between the wave digital

modelling approach and the multi convolution approach. Via a detailed comparison it was

found that the wave digital modelling approach mainly di�ers in the manner in which (1)

the open-end discontinuity is formulated, and (2) the viscothermal losses are taken into

account. We have seen that there is a greater freedom of choice in basic formulation as well

as digital approximation of these phenomena within the wave digital modelling approach.



Chapter 7

Digital Approximation of a Brass

Bell Re
ectance

A brass bell functions as a re
ector of waves, trapping energy inside the instrument in such

a way that standing waves of precisely de�ned frequencies can be build up [22]. The brass

bell is therefore vital to the tuning of the instrument. In this chapter we investigate how a

brass bell can be modelled in discrete-time such that the essential acoustic characteristics of

the bell are preserved. A particularly eÆcient scheme is possible in which lumped �lters

model the bell re
ection and transmission characteristics. This concept is discussed in

section 7.1. The main task then consists of formulating appropriate digital approximation

techniques. In section 7.2 we brie
y review some previously applied methods as well as

conventional �lter design techniques. Then in section 7.3, we study the use of \one-pole

TIIR �lter elements". These are a special type of digital �lters that are particularly

eÆcient when applied to impulse responses that exhibit temporary exponential growth.

Finally in section 7.4, the TIIR approach is applied to an experimentally determined

trumpet bell re
ectance.

7.1 Simulation using Lumped Filters

7.1.1 The Bell Re
ectance

Consider the simpli�ed representation of a brass air column depicted in �gure 7.1. We note

that the main bore of a brass instrument is usually only approximately cylindrical, and

in some cases approximately conical, but the arguments brought forward in this section

equally apply to these cases. Suppose that the objective is to compute the frequency-

domain response at the air column entry. Because brass bells are usually strongly 
ared,

the acoustic wave motion inside the bell is rather complicated due to coupling between the

153
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main bore

bell

L

Figure 7.1: Schematic model of a simpli�ed brass instrument air column.

various propagation modes. On the other hand, all propagation modes except the plane

wave mode are evanescent at low frequencies in a main bore of suÆciently small diameter.

This also holds if the main bore contains small cross-sectional discontinuities. For a brass

instrument bore, the higher modes typically do not propagate at frequencies within the

range of the musically important resonances. Hence if the plane-wave re
ectance RL(!) of

the bell is known (for example, via measurement or multi-modal analysis), then the entry

re
ectance of the complete instrument can be computed via a simple one-dimensional

formulation:

Rf(!) = e�2�L �RL(!); (7.1)

where � is the plane wave propagation constant. This concept can be used to construct an

eÆcient discrete-time model of the air column. The system in �gure 7.1 can be modelled

in discrete-time with the structure depicted in �gure 7.2. As explained in chapter 4.1, a

Nz− FD loss

)(zRL

Nz− FD loss

Figure 7.2: Discrete-time simulation scheme of the model depicted in �gure 7.1. Each FD unit
indicates a fractional delay �lter, each loss unit represents a loss-�lter, z�N indicates a delay-line,
and RL(z) is the digital �lter that approximates the plane wave horn re
ectance.

cylindrical bore section can be modelled with a simple delay-line plus some �lters for sim-

ulation of boundary losses and fractional delays. The bell re
ectance can be approximated

with a digital �lter RL(z). The simulation eÆciency can be improved by �rst lumping the
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)(zRL

)(zTL

Figure 7.3: Simulation of the bell with two lumped �lters.

boundary losses and fractional delays together with the bell re
ectance:

R̂L(!) =

�
e�2�L

e�2!L=c

�
�RL(!); (7.2)

and then approximating the lumped re
ectance R̂L(!) with a digital �lter. In this way

no loss-�lter is required in the simulation.

The higher-modes are also evanescent in the lower frequency range in the case of a

conical main bore. The bell may still be modelled as a plane wave re
ectance in this case,

although discrete-time modelling becomes slightly more complex, and has to be realised

as explained in section 6.1.2.

7.1.2 The Bell Transmittance

The sound pressure at the end of the bell can be computed via the bell transmittance

TL(!). The bell may thus be modelled in discrete-time by means of two lumped �lters that

approximate the re
ectance and transmittance (see �gure 7.3). For digital approximation,

we employ the output-error method for IIR �lter design. As seen in section 4.1 this method

allows us to emphasise accuracy at low frequencies. If viscothermal losses in the bell are

neglected, we have conservation of energy within the bell:

jRL(!)j2 + jg TL(!)j2 = 1; (7.3)

where for a bell with entry radius a1 and end radius a2, g = a2=a1; this amplitude

scaling is required to take into account the decrease of pressure with increasing bell cross-

section. The relationship in (7.3) allows us to deduce the transmittance magnitude from

a given bell re
ectance RL(!). The phase-information, which can not be deduced from

(7.3), is relatively unimportant because it does not in
uence the sound generation of the

instrument. Moreover, since the mechanisms of human sound perception are relatively
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Figure 7.4: Discrete-time re
ection function of the Bessel horn approximation of a trombone bell,
as computed via multi-modal analysis.

insensitive to phase information [108], we may \reconstruct" an arbitrary transmittance

phase without a�ecting the sound quality of the physical model. Here we apply the

method of minimum-phase reconstruction using the real cepstrum method described in

[50]. With respect to digital �lter approximation of the transmittance, the minimum-

phase reconstruction is a particularly suitable choice, because the output-error method for

IIR �lter design gives the best results if the target-response is minimum-phase [127].

7.2 Digital Approximation Techniques

7.2.1 A Generalised Target Response

A general characteristic of musically useful brass horns is that their internal bore pro�le

is well approximated by a Bessel horn [25]. Although almost any real brass bell will show

some deviations from this approximation in its bore shape and acoustic re
ectance, a

theoretically derived Bessel horn re
ection function may serve as a suitable generalised

target-response for developing e�ective digital �lter design techniques. In order to obtain

such a target-response, the re
ectance of a Bessel horn that approximates the trombone

bell pro�le depicted in �gure 2.19 was computed using the multi-modal method that is

described in [105] (see also section 2.3). In this case, the horn was assumed to be open-

ended with in�nite 
ange. The open-end radiation impedance was computed using the

formulation in [169]. Figure 7.4 shows the resulting trombone bell re
ection function.

7.2.2 Previously Developed Approximation Techniques

It appears that only two methods for digital approximation of the open-ended brass bell

re
ectance have been applied in previous research. The most simple method is to use an
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Figure 7.5: Two ways of modelling a bell re
ectance in discrete-time used in previous research.
(a) convolution with the bell re
ectance, implemented using a FIR �lter. (b) piecewise cylindrical
approximation of the bell, implemented using a waveguide �lter (WGF).

Nth-order FIR �lter, where a vector of (N + 1) �lter coeÆcients equals the truncated

impulse response of the bell (see �gure 7.5a). This method is equivalent to convolution

with the discrete-time re
ection function of the bell. Msallam [99] employed this method

for modelling of the trombone bell. Using a sample rate fs = 44:1kHz, the bell re
ection

function can usually be truncated to about 100 to 300 samples [158]. The FIR approach

gives accurate results, but must be considered as computationally expensive in the context

of musical sound synthesis.

Another method that has been applied previously is to approximate the bell pro�le

with a piecewise cylindrical model and implement this model in discrete-time using a

waveguide �lter (WGF)1 (see �gure 7.5b). For example, this approach has been taken in

[45, 46] for simulation of the trumpet. As seen in section 2.3, the re
ectance of a strongly


aring tube such a brass bell is not modelled particularly accurately using the piecewise

cylindrical approximation, even if the number of sections taken is very high. Moreover,

even if only a moderately accurate bell re
ectance is required, a relatively high number

of sections still has to be used. Taking into account that the waveguide �lter requires one

multiplication per bore section, it may be concluded that this approach is neither accurate

nor eÆcient.

7.2.3 IIR Approximation

It is clear that the bell-modelling techniques used in previous research are open to im-

provement. What is needed is a digital model that computes an accurate bell re
ectance,

but has relatively low computational costs. An obvious approach would be to employ an

IIR �lter instead of an FIR �lter, because IIR �lters are generally more powerful digital

approximators [109]. The transfer function of an IIR �lter that has N zeros and M poles

is:

H(z) =
b0 + b1z

�1 + ::::+ bN+1z
�(N+1)

a0 + a1z�1 + ::::+ aM+1z�(M+1)
: (7.4)

1The waveguide �lter is discussed in section 3.2.4.
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Several IIR �lter design techniques are available in the literature (see [104, 127, 106, 109]

for detailed discussions on IIR �lter design methods. Here we will apply the output-

error method [127], also referred to as the Steiglitz-McBride algorithm [138, 89]. This is

an iterative method that minimises a least-square error between H(z) and the target-

response Ht(!). The error may be calculated either in the frequency-domain2 or in the

time-domain3, where the frequency-domain method allows for frequency-weighting. For

both types of error-minimisation, the method is phase-sensitive (i.e. both magnitude and

phase are approximated). Smith [127] has pointed out that the output-error method is not

guaranteed to iterate to an optimum solution. Therefore some additional \�ne-tuning"

of the �lter design parameters is often needed in order to obtain good results [133]. The

main possibility of such �ne-tuning can be achieved via frequency-weighting.

In �gure 7.6, the IIR �lter approximation obtained using the frequency-domain imple-

mentation of the output-error method with �lter order 5 and 10 respectively, is compared

with the target-response. A (1=!) frequency-weighting was applied to emphasise accuracy

for the lower frequencies. As a result, the higher frequencies are overestimated. Perhaps

a more signi�cant error is that the IIR impulse response exhibits a spurious oscillative

pattern in the �rst few milliseconds, whereas the real horn re
ectance exhibits a typically

smooth build-up. We note that increasing the order of the �lter from 5 to 10 does not

improve the �t signi�cantly.

Figure 7.7 compares the target-response with the response of an IIR �lter for which

the �lter coeÆcients were obtained using the time-domain implementation. The 5th-order

�lter response is quite similar to the response obtained with the results obtained with

the frequency-domain implementation, but this time an improved �t is obtained using a

10th-order �lter. However we note that the response still exhibits spurious oscillations in

the build-up.

Apparently it is diÆcult to get a good �t to the target-response using conventional

phase-sensitive �lter design methods: it appears that the search for the optimum param-

eters is \ill-conditioned", which leads to the procedure converging to a local minimum.

Empirically we found that this tends to be the case whenever the response has a long,

slowly rising, quasi-exponential start. A possible explanation for this is that the poles of

a stable IIR �lter (which are located inside the unit circle) cannot contribute to such a

growing trend. The �lter design algorithm is, as it were, \set" to search for pole locations

outside the unit circle while being constrained to locations inside the unit circle.

2Implemented in MATLAB
r
with the function invfreqz.

3Implemented in MATLAB r
with the function stmcb.
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Figure 7.6: The IIR �lter (dotted), designed using the frequency-domain implementation of the
output-error method, compared to the Bessel horn target-response (solid).
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Figure 7.7: The IIR �lter (dotted), designed using the time-domain implementation of the output-
error, compared to the Bessel horn target-response (solid).
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Figure 7.8: Impulse response of an unstable one-pole �lter, for a range of pole coeÆcients. The
sample rate is 44:1kHz.

7.3 Use of One-Pole TIIR Filter Elements

Given that the exponentially growing portion of the impulse response is what causes the

problems, it is interesting to note that a one-pole �lter withh its pole outside the unit circle

has exactly such a response. For example, consider the one-pole �lter with the transfer

function

H(z) =
1

1� pz�1
: (7.5)

Figure 7.8 shows the impulse response of this �lter for a number of di�erent pole coeÆcients

(p � 1). It is well known that such a �lter is unstable, which usually excludes it from

application in the time-domain. While the impulse response of a �lter with p > 1 exhibits

in�nite growth, we would only need temporary growth for the horn re
ection function

approximation. If somehow a special technique can be applied in which the growth of this

response can be stopped after a certain number of samples, then the resulting truncated

impulse response could be used for approximation of the start of the horn impulse response.

Fortunately, such a technique indeed exists, and the �lters that result from applying this

technique are referred to as truncated in�nite impulse response (TIIR) �lters. Smith

[133, 157] has suggested to use one-pole TIIR �lter elements for the approximation of a

brass bell re
ectance.

7.3.1 Truncated In�nite Impulse Response Filters

The basic idea of a truncated in�nite impulse response (TIIR) �lter is to synthesise a FIR

�lter as the di�erence of two IIR �lters [162]. That is, the tail of the �rst IIR �lter is

\cancelled" by the second IIR �lter, such that the overall response is FIR. In order to

realise this cancellation, the second IIR �lter has to be designed such that it generates a
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Figure 7.9: Implementation of a one-pole TIIR �lter. This implementation is only suitable in the
case of a �lter with a pole inside the unit circle.

copy of the tail of the �rst IIR �lter. For example, consider the �rst-order IIR �lter with

a transfer function as given in equation (7.5). This one-pole �lter has an impulse response

h1(n) = pn � �(n); (7.6)

where the operator \�" denotes convolution, and where �(n) is the Heaviside unit-step

function:

�(n) =

(
1; n � 0

0; n < 0
: (7.7)

Suppose that we want to truncate the impulse response h1(n) after N samples. With the

�rst sample occurring at t = 0s, this means that we have to �nd an IIR �lter that has an

impulse response:

h2(n) =

(
0; n < N

pn �(n); n � N
; (7.8)

and subtract the output of this �lter from the output of the �rst �lter. We can write (7.8)

as:

h2(n) = pn � �(n �N); (7.9a)

= pN � pn�N � �(n�N); (7.9b)

= g � h1(n�N); (7.9c)

where g = pN . Thus h2 is simply h1 scaled by g and delayed by N samples! We can now

write the TIIR �lter transfer function as:

H(z) = H1(z)�H2(z); (7.10a)

=
1

1� pz�1
� gz�N

1� pz�1 ; (7.10b)

=
1� gz�N

1� pz�1
: (7.10c)

This �lter can be implemented with the structure in �gure 7.9. For a pole that is located
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Figure 7.10: Impulse response of a one-pole TIIR �lter with p = 0:99. The (decaying) tail is
cancelled after N = 100 samples.

inside the unit-circle (jpj < 1), the impulse response is an exponentially decaying curve

that is truncated after N samples. Figure 7.10 shows the impulse response for p = 0:99

and N = 100. In theory, a TIIR �lter always has a �nite impulse response, even in the

\unstable" case in which the pole is located outside the unit-circle (jpj > 1). The impulse

response then is an exponentially growing curve that is truncated after N samples (see

�gure 7.11). However, in this case the straight-forward implementation fails numerically.

While the tail-cancelling concept always functions in principle, the exponential growth

of the round-o� error eventually starts to dominate. Thus, although this problem might

perhaps not occur within the �rst few hundred samples, it will eventually occur if we keep

computing the impulse response.
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Figure 7.11: Impulse response of a one-pole TIIR �lter with p = 1:01. The exponentially growing
tail is cancelled after N = 100 samples.

Clearly, such a numerical failure complicates the use of this �lter model. Fortunately,

this problem can be solved by using two alternating instances of the TIIR �lter. That

is, we e�ectively run two versions of the TIIR �lter in parallel (�lter (I) and �lter (II)),

where only one of them (e.g., �lter (I)) is producing the current output. However �lter

(II) receives the same input signal as �lter (I). After M samples, we \switch" the two

�lters, so now �lter (II) produces the output. Directly after switching, the state of �lter

(I) is cleared. This means that all the values of the delay-line as well as the memorised

value of the �lter are set to zero. Filter (I) then starts to receive the normal input signal,
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Figure 7.12: A one-pole switched TIIR �lter. The grey arrows indicate control signals. Select(n)
is the main control signal that determines whether output(I) or output(II) is used.

and \warms" up for a period of M samples. The key observation is that, because the

desired TIIR �lter functions as an FIR �lter, it reaches an exact \steady state" after

only N samples, where N is the length of the synthesised FIR �lter. As a result, a \fresh

instance" of the TIIR �lter, when \ramped up" from the zero state, is ready to be switched

in after only N samples, even though the �lter has not yet reached the same internal state

as the one being switched out. Hence as long as we choose M > N , the switching should

not produce any discontinuities in the output signal.

Figure 7.12 shows one of the possible ways of implementing such a \switched"

one-pole TIIR �lter. Here we use the \shared delay" form. By conceptually \pushing"

all four one-pole �lters forward through the subtraction block, one obtains additionally

the \shared dynamics" form suggested in [162]. For simplicity, however, we will describe

the version in �gure 7.12. Referring to �gure 7.12, suppose the upper pair of one-pole

�lters is switched in (as the �gure indicates). When the Select signal undergoes

transition, the alternate one-pole pair below is selected, and the upper one-poles can

be cleared and halted (or simply not computed in a software implementation). If

the TIIR impulse-response length is N samples, then the �rst upper �lter on the left

is restarted N samples before it is to be switched back in, while the second upper

�lter is restarted on the same sample as it is switched back in. This works because,

even though the upper pair will not be in the same state as the lower pair after N

times steps, its tail-cancelling di�erence, which synthesizes an FIR �lter, is identical

(ignoring round-o� errors). Therefore, the switching resets can be as often as every N

samples. It is desirable, however, to switch much less often than every N samples in
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Figure 7.13: Impulse response of a one-pole TIIR �lter that has its pole on the unit-circle (p = 1).
The \constant function" is truncated after 100 samples.

order to minimise computations. The minimum switching rate, at the other extreme, is

determined by the exponential growth rate and available dynamic range [162]. Finally,

we note that when the poles are set to p = 1, the one-pole �lter elements become digital

integrators, and the TIIR �lter impulse response is a truncated constant function (see

�gure 7.13). The tail-cancelling multiply-subtract in that case becomes only a subtraction.

We note that the resets for digital integrators can be considerably less often than for

growing exponentials, because the round-o� error grows more slowly in an integrator [162].

In summary, a one-pole TIIR �lter can be used for making

� a truncated decaying exponential (p < 1, no switching required).

� a truncated constant function (p = 1, switching at a \low" rate required (M � N)).

� a truncated rising exponential (p > 1, switching at a \normal" rate required (M >

N)).

TIIR �lters can be computed at a cost close to that of a one-pole �lter and a multiply-

add, plus some associated switching and control logic. Higher order TIIR �lters are also

possible [162]. However, the one-pole �lter is suÆciently general for the purposes of the

present study.

7.3.2 Bessel Horn Application

As shown in �gure 7.4, the Bessel horn impulse response has a slow, quasi-exponentially

growing portion at the beginning, corresponding to the smoothly increasing taper angle

of the horn. A one-pole TIIR �lter gives a truncated exponential impulse response y(n) =

aecn, for n = 0; 1; 2; : : : ; N�1, and zero afterwards. We can use this truncated exponential

to eÆciently implement the initial growing trend in the horn response (c > 0). We found

empirically that improved accuracy is obtained by using the sum of an exponential and a
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constant function, i.e.,

y(n) =

(
aecn + b; n = 0; 1; 2; : : : ; N � 1

0; otherwise
: (7.11)

In order to �nd appropriate values for the parameters a, b and c, an optimisation routine4

that minimises the error between y(n) and the exponentially growing part of the horn is

used. As seen in the section 7.3.1, a truncated constant function f(n) = 1 can be generated

using a one-pole TIIR �lter with its pole set to p = 1. We only have to multiply such a

�lter with b to obtain a truncated constant function f(n) = b. This TIIR �lter operates

in parallel with the TIIR �lter that generates an exponentially growing response. Hence

the transfer function of the overall TIIR �lter for modelling the start of the horn impulse

response can be written as5

H(z) = b

�
1� z�N
1� z�1

�
+ a

�
1� pNz�N

1� pz�1

�
: (7.12)

Note that both one-pole TIIR �lter elements in (7.12) are implemented in \switched"

form, as explained in section 7.3.1.

The remaining part of the re
ection function has a decaying trend, and can therefore

be modelled accurately with a conventional IIR �lter design technique. In this case we

applied the Steiglitz-McBride algorithm. The input to the IIR �lter has to be delayed for

N samples, so that the tail it generates starts exactly after the truncation-point of the

TIIR �lter. Hence the �nal �ltering structure takes the form depicted in �gure 7.14.

In �gure 7.15, the TIIR horn �lter structure (using a 3rd-order IIR tail �lter approx-

imation) is compared with the theoretical response. We included the open-end e�ective

length6 in the comparison, since it gives us a good indication of how well the positions

of the resonances of the horn are preserved. Apparently, the TIIR+IIR �lter scheme ap-

proximates both the magnitude and the e�ective length closely at frequencies below the

bell cut-o�.

7.4 Trumpet Bell Application

The impulse response of the Bessel horn used in the computations in section 7.2.1 is

an \idealised", target-response. It was found that this response can be simulated in

discrete-time with the use of an o�set-exponential TIIR section (that models the impulse

response start) plus an IIR �lter (that models the impulse response tail). In this section we

4A simplex search method was used, implemented in MATLAB
r
with fmins.

5This type of �lter will be referred to as an \o�set-exponential TIIR section".
6see appendix C for the de�nition of the open-end e�ective length of an acoustical system.
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Figure 7.14: TIIR+IIR Filter scheme for modelling the Bessel horn re
ectance. The o�set-
exponential TIIR section is indicated with OE TIIR.
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Figure 7.15: Bessel horn response (solid) compared with the TIIR+IIR �lter approximation
(dashed) in terms of (a) impulse response, (b) magnitude and (c) open-end e�ective length. The
vertical line in (a) indicates the segmentation into an growing exponential and a decaying tail. The
sample rate is 44:1kHz.
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Figure 7.16: Trumpet bore pro�le reconstruction. The valves and the �nal tubular bend show as
\dents" in the pro�le. The dashed line indicates the point where the bell starts.

investigate the possibilities of using the TIIR approach in modelling of an experimentally

determined trumpet bell response.

7.4.1 Experimental Determination of the Bell Re
ectance

Acoustic pulse re
ectometry techniques7 were applied to obtain the impulse response of a

Boosey and Hawkes trumpet (without mouthpiece). A piecewise cylindrical section model

of the bore pro�le was then reconstructed using an inverse-scattering method [10, 126],

taking into account the viscothermal losses (see �gure 7.16). The piecewise cylindrical

model corresponds well to the physical bore pro�le for non-
aring tube-segments, thus

giving a good physical model up to the bell. The remaining cylindrical sections do not

provide valid geometrical information, but they retain all relevant acoustical information of

the bell re
ectance, including the complex in
uences of the higher transversal modes and

the open-end radiation impedance. We note that the pro�le has been reconstructed beyond

the physical end of the trumpet. Because the transition to open air is very smooth, the

pro�le shows no taper discontinuity at this point. The bell re
ectance RL(!) is computed

as the re
ectance of that part of the piecewise cylindrical model that corresponds to

reconstruction of the bell.

7.4.2 TIIR+IIR Filter Model

The trumpet bell re
ection function rL(t) is obtained by taking the inverse Fourier trans-

form of RL(!). This re
ection function (see �gure 7.18a, solid grey line) di�ers from

the theoretical Bessel horn response (see �gure 7.4) primarily in its two-stage build-up

7See appendix J for a short description of this experimental technique.
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towards the main re
ection peak. By adding another o�set-exponential TIIR section

(equation (7.12)) to the basic horn �lter structure, the �lter design methodology is suÆ-

ciently 
exible to cover the two-stage build-up. That is, each of the two build-up stages is

modelled using an o�set-exponential TIIR section, and the tail is modelled using an IIR

�lter (see �gure 7.17).

7.4.3 FIR+IIR Filter Model

The growing part of the bell re
ection function may also be approximated using an FIR

�lter. Such an approach leads to an FIR+IIR �lter model, which may be expected to be

more accurate than the TIIR+IIR �lter model. The computational costs of this model

will be considerably higher than that of the TIIR+IIR model, but signi�cantly smaller

than that of a FIR model of similar accuracy. For example, using a 44:1kHz sample rate,

the growing part of the trumpet bell re
ection function is about 175 samples, while a good

FIR response is about 400 samples long. The FIR+IIR model may thus be considered as

a good solution in the case where a high level of precision is required.

The time and frequency responses of the TIIR+IIR model and the FIR+IIR model

are depicted in �gure 7.18. As can be seen in �gure 7.18, the TIIR+IIR model exhibits

small di�erences with the experimentally determined response in the growing part of the

re
ection function. This is because the TIIR approximation of the initial slow rise is insen-

sitive to re
ections caused by bore pro�le dents. Naturally, these problems do not occur

with the FIR+IIR model, since it e�ectively samples the growing part of the re
ection

function. We note that the FIR+IIR model is extremely accurate at frequencies below

cut-o�, and that the TIIR+IIR model response exhibits only small magnitude deviations

in this frequency range.

7.5 Conclusions

In this chapter we have seen that a brass bell can be modelled eÆciently and accurately by

means of a digital re
ectance �lter. This �lter is designed to approximate an experimen-

tally determined or calculated plane wave bell re
ectance. With respect to �lter design, it

was found that conventional phase sensitive IIR �lter design techniques typically perform

poorly when applied to a brass bell re
ectance. More accurate results were obtained using

a modelling scheme in which the decaying tail is modelled with an IIR �lter, and the ex-

ponentially rising start of the brass bell re
ectance is modelled either with TIIR one-pole

�lter elements or an FIR �lter.

In summary, we recommend the TIIR+IIR model for applications in which eÆciency is

a high priority. While this approach accurately preserves the essential properties of a brass

horn (such as the e�ective length), it does not model the more subtle features (such as
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Figure 7.17: TIIR+IIR model for computing the trumpet bell re
ectance. The o�set-exponential
TIIR sections are indicated with OE TIIR. The z�N1 unit indicates the delay-line that is required
to delay the input to the second OE TIIR section, and the z�N2 unit indicates the delay-line that
is required to delay the input to the IIR �lter.
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small re
ections due to dents and bends). Simulations in which accuracy is a high priority

can be achieved using of the computationally more expensive FIR+FIR �lter model.



Chapter 8

Mouthpiece Modelling

The airway of the mouthpiece of a brass or woodwind instrument forms the acoustical

channel through which the reed or the lips communicate with the air column. The mouth-

piece design therefore usually has a strong in
uence on the oscillations that are generated

in the instrument. For a detailed discussion on the acoustical function of wind instrument

mouthpieces, we refer to [22]. In this chapter we develop techniques for modelling the

mouthpiece in discrete-time. A general modelling scheme for brass instrument mouth-

pieces is developed in section 8.1. For woodwinds, the variety of mouthpiece designs is

such that for each instrument a separate modelling approach is required. We therefore

limit ourselves to modelling the clarinet mouthpiece (section 8.2).

8.1 Brass Mouthpieces

Brass mouthpieces come in a great variety of shapes. For example, a trumpet mouthpiece

is typically cup-shaped (see �gure 8.1a), whereas a more funnel-shaped mouthpiece is

characteristic for horns (�gure 8.1b). A common characteristic for all brass mouthpieces

is that they have a tubular constriction (the backbore) through which the cup volume and

(a) Trumpet (b) Horn

Figure 8.1: Cross-section of typical brass instrument mouthpieces. (After Campbell and Greated
[33]).
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Figure 8.2: Re
ection function of a trumpet (without mouthpiece), obtained using pulse re
ec-
tometry measurement techniques.

main bore of the instrument communicate. It is generally assumed that the exact shape of

the cup is relatively unimportant to the acoustical function of the mouthpiece [22, 18, 91,

33, 52]. Inserted into a brass instrument, the mouthpiece performs its resonating function

such that the amplitudes of the musically important resonance frequencies are enhanced.

In other words, it acts as an impedance multiplier [33]. The mouthpiece also slightly

shifts the frequencies of the air column resonances. This e�ect is usually expressed in the

mouthpiece e�ective length1. In this section we work towards a discrete-time model of the

brass mouthpiece. The modelling approach is veri�ed using measurements on a particular

(trumpet) mouthpiece2.

8.1.1 Measurements

Two types of experiments3 were carried out in order to measure the acoustical behaviour of

the trumpet mouthpiece. First, the plane wave re
ection function of the trumpet (without

mouthpiece) was obtained using pulse re
ectometry techniques (see �gure 8.2). The input

impedance Ztr(!) of the trumpet (without mouthpiece) can be derived from the measured

re
ection function:

Ztr(!) = Z0

�
1 +Rf (!)

1�Rf (!)

�
; (8.1)

where Z0 is the characteristic impedance at the trumpet bore entry, and Rf(!) is the

Fourier transform of the re
ection function. Figure 8.3a depicts the resulting input

impedance curve. Next, the input impedance of the same trumpet with mouthpiece was

obtained via direct input impedance measurement. The magnitude of the measured input
1See appendix C for an explanation of the concept of e�ective length.
2A Wick 3E trumpet mouthpiece.
3See appendix J for a short description of the acoustic measurement techniques used in this study.
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Figure 8.3: Input impedance (magnitude) of a trumpet without mouthpiece (left) and with mouth-
piece inserted (right).

impedance is depicted in �gure 8.3b. A comparison between the two impedance curves in

�gure 8.3 con�rms the theory that (1) the mouthpiece acts as an impedance-multiplier,

and (2) the mouthpiece adds a certain (e�ective) length to the instrument, i.e. one can see

a downward shift of the resonance frequencies. The �rst task is to �nd a simple mouthpiece

model with which both these observed features are well approximated.

8.1.2 The Cylinder-Cone Model

In several studies it has been suggested that the brass mouthcup can be modelled as a

simple cylindrical section of equivalent volume4 [22, 91, 99]. This approach is based on

the low-frequency behaviour of the mouthcup, since in the low-frequency limit, a cavity

is characterised by its volume whereas the high-frequency behaviour also depends on its

shape. Hence a simple model of the brass mouthpiece consists of a cylindrical section

(representing the mouthcup) plus a conical section (representing the backbore).

Figure 8.4 shows the model dimensions that result when applying this approach to the

trumpet mouthpiece. In theory, the exact dimensions of the cylindrical section should not

make much di�erence as long as it has the correct volume. However in practice we found

that the highest modelling accuracy is obtained using a cylinder with a cross-section that

is of the same order as the average cross-section of the real mouthcup.

Using the piecewise modelling techniques described in section 2.3, we can compute

the input impedance of the trumpet �tted with this theoretical mouthpiece. This was

carried out using transmission-line matrices (as described in section 2.3), and using the

measured trumpet re
ectance Rf(!) as the end-re
ectance of the mouthpiece system. We
4The volume of the real mouthcup was measured to be 1:1� 0:05ml.
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Figure 8.4: Cylinder-cone model of the trumpet mouthpiece. The volume of the cylindrical section
equals the volume of the mouthcup. The dimensions are given in mm.
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Figure 8.5: Input impedance (magnitude) of the trumpet with mouthpiece, as calculated using
the cylinder-cone model for a bandwidth of 1.5kHz (left) and 20kHz (right). The measured input
impedance (grey line) is plotted for comparison in the left �gure.
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Figure 8.6: Equivalent network representation of the hybrid model. The mouthcup is modelled as
a compliance, and the backbore is modelled as a conical section. The four-terminal unit indicated
with the ABCD-matrix represents the conical section.

note that it is important to take into account the small di�erence in cross-section between

the backbore and the lead-pipe. The resulting input impedance curve is compared with

the measured input impedance in �gure 8.5a. The calculated impedance curve exhibits

an approximately correct multiplier-e�ect as well as a well-matched set of resonance fre-

quencies. However, plotting the impedance for a wider bandwidth (see �gure 8.5b) reveals

that extra impedance-multiplier regions exist. These extra regions are due to the large

discontinuity at the boundary between the cylinder and the cone. No such step occurs

in the bore pro�le of the real mouthpiece, therefore it may be assumed that the extra

impedance-multiplier regions are not a feature of real brass instruments. The extra reso-

nances form an unwanted model feature, since they will cause a signi�cant change to the

sound of a full instrument simulation.

Although the cylinder-cone model is partly based on a low-frequency approximation,

it is essentially a distributed model. The extra unwanted feature of higher frequency

enhancements could be avoided by using a more re�ned distributed model, in which the

mouthcup bore pro�le is approximated with a piecewise series of very short tube sections.

However, in order to realise such a piecewise model in discrete-time, a very high spatial

resolution (and thus a very high sample rate) is required. Given that the computational

costs are further increased due to the large number of cylindrical scattering junctions that

are required to implement such a piecewise model, it may be concluded that this is not a

particularly eÆcient approach.

8.1.3 The Hybrid Model

As discussed in section 3.4, a small volume is more eÆciently simulated using a lumped

element model, which can be discretised using wave digital �lter (WDF) techniques. Hence

we suggest a \hybrid" mouthpiece model, in which the cup volume is modelled as a

lumped element (a pure compliance), and the backbore is modelled as a distributed element

(a conical section). Figure 8.6 shows the equivalent network of this arrangement. The

acoustical behaviour of the conical backbore can be described with a transmission-line

matrix (see equation (2.93)). Given that A, B, C and D are the elements of this matrix,
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Figure 8.7: Input impedance (magnitude) of the trumpet with mouthpiece, as calculated with the
hybrid model for a bandwidth of 1.5kHz (left) and 20kHz (right). The measured input impedance
(grey line) is plotted for comparison in the left �gure.

the input impedance Zbb(!) as seen from the backbore entry is:

Zbb(!) =
AZtr(!) +B

CZtr(!) +D
: (8.2)

The input impedance Zin(!) at the mouthpiece entry is simply a parallel combination of

Zbb(!) and the impedance Zcup(!) = 1=(j!C) of the mouthcup:

Zin(!) =
Zcup(!) �Zbb(!)
Zcup(!) + Zbb(!)

: (8.3)

Figure 8.7a compares Zin(!) to the measured input impedance. As could be expected,

the hybrid model results in an impedance curve that is very similar to the curve obtained

with the cylinder-cone model. However, the hybrid model does not have the disadvantage

of the extra impedance-multiplier regions at the higher frequencies (see �gure 8.7b). We

note that the hybrid model corresponds exactly to the mouthpiece model presented by

Lurton in [91].

8.1.4 Discretisation

The hybrid model can be simulated in discrete-time by employing the wave digital mod-

elling techniques outlined in section 3.4. The �nal \wave digital brass mouthpiece model"

takes the form depicted in �gure 8.8. As discussed in section 3.3, an acoustic volume can

be modelled using WDF techniques. In a full instrument model (one that includes lip exci-

tation), the left port of the system communicates directly with the unit that computes the

non-linear 
ow through the lips5. Because the lips will have an instantaneous re
ection, the
5This unit will be referred to as \the lips".
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Figure 8.8: Discrete-time modelling structure of the hybrid mouthpiece model. Each line unit
indicates a cascade of delay-line, a fractional delay �lter and a loss-�lter. The WD-lV unit models
the cup volume as a pure compliance, and the WD-l J and WD J units model the junctions of the
conical backbore with the cup volume and the lead-pipe, respectively. Ga; Gb; Gc; Gd; Ge are the
local port-admittances.

\cup volume unit" will have to have a non-immediate re
ectance towards the left, which

can be realised by choosing the appropriate value for Ga. This results in a WD-l volume

structure (see �gure 8.10), for which the derivation is given in section 8.1.5. Discrete-time

modelling of conical bores was discussed in chapters 4 and section 6. Wave propagation

in a conical section can be simulated using a delay-line, while the wave scattering at both

the entry- and the end-junction can be simulated using the wave digital junction models

described in section 6.1. Viscothermal losses are approximated with 5th-order IIR �lters,

and fractional delays with 3rd-order Lagrange interpolators. The WD-l volume unit has

an immediate re
ectance towards the right, thus in order to avoid a delay-free loop, the

left junction of the conical section needs to be modelled as a WD-l junction. The other

junction (between the backbore and the lead-pipe) can be modelled with a normal WD

junction, as described in section 6.1.1.

For determination of the values of the port-admittances Ga, Gb, Gc, Gd and Ge, one

has to work from right to left. The value of the port-admittances Ge, Gd and Gc are �xed

because the lead-pipe and the conical backbore are distributed systems. The values of Gb

and Ga are arbitrary from a physical point of view but must be set to a speci�c value in

order to ensure the realisability of the system. Gb only depends on Gc and the junction

inertance, and the value of Ga depends on Gb and the volume compliance.

8.1.5 The WD-l Volume

As seen in section 3.3.2, the acoustic behaviour of a small volume can be modelled as a

parallel compliance network that may be considered as a three-port with a compliance

load at one of its ports. The basic WDF structure for simulation of such a network is as

depicted in �gure 8.9.

The three-port equations are as given in equations (3.51). As with the example ex-
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Figure 8.9: Basic structure for WDF modelling of the parallel compliance.

plained in section 3.3.2, we have to set the port-admittance of the compliance-loop such

that a delay-free path is avoided. This amounts to setting G3 = �C, and the compliance

re
ectance Rcom(z) is then modelled as a single delay:

P�3 = P+
3 z�1: (8.4)

However, the current case di�ers from the WD volume derived in section 3.3.2, because a

non-immediate re
ectance towards the left is required. This is realised by setting:

G1 = G2 + G3: (8.5)

After substitution of (8.5) into the three-port equations, the �nal set of equations for the

WD-l volume can be written:

P�3 = P+
3 z�1;

W1 = P�2 � P�3 ;

W2 = kjW1;

P�1 = P�2 +W2;

P+
2 = P+

1 +W2;

P+
3 = P+

1 +W1 +W2:

(8.6)

where

kj = � G3

G2 + G3
: (8.7)

The signal 
ow of the WD-l volume is depicted in �gure 8.10.

8.1.6 Discretisation E�ects

In order to examine the e�ects of discretisation, we need to compare the discrete-time

model with its continuous-time counterpart in terms of a certain response. We choose here
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Figure 8.10: Signal 
ow of the WD-l volume.

to compute the mouthpiece e�ective length, since it has proved to be a useful measure in

brass instrument research (see, for example, [110, 22, 33, 15]). The e�ective length of the

mouthpiece can be derived from the re
ectance Rmp(!) as seen from the instrument6. In

this case we compute the \closed-end" e�ective length, which means that it is assumed

that the mouthcup is rigidly terminated at the end (see �gure 8.11).

)(ωmpR

Figure 8.11: The \closed-end" e�ective length of the mouthpiece can be derived from the \closed-
end" re
ectance as seen from the instrument.

Figure 8.12 compares the e�ective lengths as computed with a transmission-line model

and with two versions of the wave digital model. In version (I), we included loss-�lters,

while in version (II) these were omitted. The second version thus amounts to neglecting the

viscothermal losses. We can see from �gure 8.12 that the e�ective length of the �rst version

exhibits large deviations at the lower frequencies (f < 400Hz) with the transmission-line

model. This is a typical example of the problem of using an inconsistent formulation of the

propagation constant7. On the other hand, version (II) exhibits a small deviation at all

frequencies, but does not exhibit any frequency attenuation. Which version is most suitable

depends on the lowest pitch playable on the instrument. For many brass instruments, the

�rst resonance of the air column is \out of tune" with the higher resonances and is rarely

used in musical practice. Therefore the deviation at the lower frequencies may in some

cases be of small relevance to the tuning of the instrument.

6This is explained in appendix C.
7This problem is discussed in section 4.3.3.
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Figure 8.12: E�ective length of the hybrid mouthpiece model.

8.2 Clarinet Mouthpieces

In this section we set out to develop a discrete-time model of the clarinet mouthpiece.

The modelling approach is tested with experiments on a particular mouthpiece8. We take

the view that the geometrical di�erences between various clarinet mouthpiece designs

are generally small enough to assume that the resulting model is suÆciently 
exible for

simulation of a wide variety of clarinet mouthpiece designs.

(A)
(B)

Figure 8.13: Cross-section of the mouthpiece used in the measurements (not to scale).

A schematic cross-sectional view of the mouthpiece is depicted in �gure 8.13. The

shape of the interior of this mouthpiece can be divided into two parts, (A) and (B). Part

(B) is slightly tapered, and approximately functions as an extension of the main bore.

Part (A) has a more complicated shape, in which the cross-section at most places has

an approximately rectangular shape. At the boundary between (A) and (B), there is a

transition from an approximately rectangular to a circular cross-section. In this particular

design, this cross-sectional \step" is very abrupt. Other mouthpiece designs might di�er

from this mouthpiece in two ways. Firstly, part (B) is sometimes purely cylindrical.
8A Bundy clarinet mouthpiece.
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Figure 8.14: The tubular assembly that was used in the measurements. The assembly was
designed such that the clarinet mouthpiece could be �tted at the entry. The dimensions of the
assembly are comparable to those of a real clarinet. Dimensions are given in mm.

Secondly, the transition from (A) to (B) is much more smooth in certain designs9. Given

these possible variations in mouthpiece designs, the following theories apply to clarinet

mouthpieces in general:

� The position of the resonance frequencies of the clarinet are mainly controlled by

the total volume of the mouthpiece interior.

� The heights of the impedance peaks of the clarinet are mainly controlled by the

particular shape of the mouthpiece interior.

For a broader discussion on the acoustical function of woodwind mouthpieces, we refer to

[101, 22, 33].

8.2.1 Measurements

Input impedance measurements were carried out in order to investigate the acoustical be-

haviour of the clarinet mouthpiece. The main strategy is the same as that applied to brass

instruments. That is, an instrument was measured, with and without mouthpiece inserted,

and the resulting responses were then compared. However, the approach di�ers in two

respects. Firstly, this time both experiments were direct input impedance measurements.

Secondly, the mouthpiece was not �tted to a real instrument but instead to an assembly of

tubular sections (see �gure 8.14). The main reason for using this assembly is that leakages

occurred during experiments with the real clarinet, which greatly complicated the task of

obtaining consistent and reliable results. Another advantage of using the tubular assembly

is that the complex input impedance can be obtained via calculation, whereas the current

experimental setup only allows for determination of the impedance magnitude.

Figure 8.15 shows the measured input impedance of the tubular assembly. For com-

parison, the calculated input impedance is also plotted. The good match between theory

9A sharp step in the mouthpiece cross-section leads to separation of the air stream from the wall [33],
which has consequences to the functioning and the sound of the instrument. However, this topic is not
addressed in the present study.
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Figure 8.15: Input impedance of the tubular assembly.

and experiment justi�es the use of the calculated impedance in computations with a tubu-

lar assembly �tted with a (theoretical) mouthpiece. That is, given that the acoustical

function of the mouthpiece is expressed with a transmission-line matrix, we may compute

the input impedance of the assembly �tted with the mouthpiece as:

Zin(!) =
AZas(!) +B

C Zas(!) +D
; (8.8)

where Zas(!) is the calculated complex input impedance of the assembly and A, B, C,

and D are the elements of the transmission-line matrix.

8.2.2 The Cylinder-Cone Model

A simple model of the clarinet mouthpiece is constructed by joining a conical section (of

the dimensions of part (B)), with a cylindrical section of the same volume as the volume

of part (A) (see �gure 8.16). The cylindrical section was chosen such that the step is the

same as at the boundary between (A) and (B) in the real mouthpiece. This way it is

ensured that the main di�erence between this simple model and the real mouthpiece is

due only to the di�erence in shape of part (A).

Ideally, one would like to create a more re�ned distributed model of the mouthpiece,

in the form of an axially-symmetric model approximation of the mouthpiece pro�le. How-

ever, it is rather diÆcult to predict exactly how waves propagate through part (A) under

playing conditions (with the reed closing o� most of the mouthpiece). Hence there are

no clear guidelines as to how to construct an axially-symmetric bore shape that properly

represents the intricate acoustic behaviour of (A). However, since the dimensions of (A)

are rather small in comparison with the smallest wavelength for frequencies below the

clarinet tonehole lattice cut-o� frequency, the simple model should at least suÆce with

respect to obtaining the correct resonance frequencies of a clarinet with mouthpiece. The
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Figure 8.16: Cylinder-cone model of the clarinet mouthpiece. Dimensions are given in mm.

elements of the transmission-line matrix of this model can be obtained with the piecewise

modelling techniques explained in section 2.3.
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Figure 8.17: Input impedance of the assembly �tted with mouthpiece. The dashed curve was
computed using the cylinder-cone mouthpiece model.

Figure 8.17 compares the input impedance computed using equation (8.8) with the

measured input impedance of the tubular assembly with the real mouthpiece �tted.

Clearly, the mouthpiece signi�cantly enhances some of the input impedance peaks. The

e�ect is such that most resonances now have approximately equal amplitude, apart from

the fundamental. This e�ect is closely emulated by the cylinder-cone model.

8.2.3 Discretisation

The cylinder-cone mouthpiece model can be implemented using the techniques described in

chapters 4 and 6. Using the wave digital junction for implementation of wave scattering at

the junctions, the wave digital model in �gure 8.18 results. As with the wave digital brass

mouthpiece model, the fractionality of the propagation-delays was achieved using third-

order Lagrange FIR interpolation �lters, and the viscothermal losses were approximated

with 5th-order IIR �lters.
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We can investigate the e�ects of discretisation by computing the mouthpiece re
ectance

as seen from the main bore (and assuming a closed end), and deriving the (closed-end)

e�ective length from this re
ectance using (C.5). Figure 8.19 compares the e�ective length

curves as computed with transmission-line matrices and with two versions of the wave

digital model. As with the brass mouthpiece model, version (I) exhibits strong deviations

with the transmission-line model for f < 0:25kHz. The lowest pitch on a clarinet is usually

well below 0:25kHz, thus the range of notes in the lowest octave (register) of the instrument

will be out of tune with version (I). With version (II), in which the viscothermal losses are

neglected, the e�ective length is slightly too small at all frequencies, thus all notes will be

a little out of tune. Furthermore, version (2) does not implement any losses.
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Figure 8.19: Closed-end e�ective length of the cylinder-cone mouthpiece model.
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Figure 8.20: Travelling-wave based simulation of a wind instrument, using a two-port unit for
modelling the mouthpiece.

8.3 Conclusions and Future Work

In this chapter, we have seen that brass and clarinet mouthpieces can be simulated ef-

�ciently in the digital domain using wave digital modelling techniques. The resulting

two-port mouthpiece units can be employed in a modular way in a travelling-wave based

simulation (see �gure 8.20).

For simulation of the clarinet mouthpiece, this two-port unit takes the form of a

cylinder-cone model. With minor adaptations, this basic approach can also be applied

to discrete-time modelling of various other woodwind mouthpieces.

In section 8.1, it was found that a hybrid mouthpiece model (containing both lumped

and distributed elements) accurately simulates the acoustical function of the brass mouth-

piece. This model was discretised using wave digital modelling techniques. In comparison

with the lumped element mouthpiece models presented by Dietz [45], the acoustical func-

tion of the backbore is modelled more accurately. This is because in Dietz' models, the

backbore is modelled as a pure inertance, or alternatively as an inertance and a compliance,

and neither of these models properly incorporates the conicity of the backbore.

An interesting direction for future work on this subject is to investigate the e�ect of

the mouthpiece design on the radiated sound. A recent psycho-acoustic study by Wright

and Campbell [168] has indicated that the perceived timbre of cup-mouthpiece wind in-

struments may be altered signi�cantly when di�erent mouthpieces are used. Furthermore,

a study by Gilbert [56] on the in
uence of the mouthpiece on the sound of the saxo-

phone has indicated that several \formants" can be identi�ed in the radiated spectrum,

and that the strength and position of these formants depend strongly on the shape of

the mouthpiece interior. Since our modelling approach is strongly based on low-frequency

approximations, it would be complicated, and indeed unnecessary to take into account

directly all the higher frequency characteristics of the radiated sound when modelling the

internal oscillations of the instrument (see sections (9.1.3) and (9.2.3) for a further dis-

cussion on modelling the radiated sound). However, the low-frequency approach should

produce a reasonably good approximation for the frequency range in which the �rst few

spectral formants (and indeed all the signi�cant resonance peaks) of a wind instrument
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fall.



Chapter 9

Full Bore Simulations

Most musical wind instruments have evolved quite slowly towards their present form, with

minor tonal or technical improvements re
ecting the gradually changing mental image of

the ideal instrument of that type [52]. The speci�c sound produced with these instruments

is thus to a signi�cant extent captured within the intricate physicalities of the instrument.

It is therefore interesting to try and simulate these instruments in a precise way, not only

in order to reproduce the sounds, but also as an exercise to gain insight into what features

give the instrument its speci�c sonoric qualities.

In this relatively short chapter, we bring together the techniques described in previous

chapters in order to simulate the air columns of two particular wind instruments, namely

that of a Boosey and Hawkes trumpet1 and a Selmer clarinet2. The principal reason for

using these two speci�c instruments is that they were available for measurements during

the period of study.

9.1 The Boosey and Hawkes Trumpet

The trumpet is a brass instrument with a bore that is largely cylindrical and 
ares out

towards the end. The 
aring bell is actively involved as a resonator for every note played

on the instrument, and adds an e�ective length to the instrument such that the bore has

an approximately even series of harmonics. The length of the bore can be adjusted by

means of three valves, which insert extra lengths of tubing into the cylindrical part of the

bore. The instrument is played by buzzing the lips while holding them pressed against the

mouthpiece such that a coupling between the lip and the air column vibrations develops.
1A Boosey and Hawkes \78".
2A Selmer clarinet no. 1400.
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Figure 9.1: Trumpet bore pro�le reconstruction. The dashed lines indicate the division of the
trumpet bore into a tapered section (the lead-pipe), a cylindrical section (the main bore), and a

ared section (the bell).

9.1.1 Transmission-Line Model

Results of measurements on the Boosey and Hawkes trumpet were presented in sections

7.4.1 and 8.1.1. Figure 8.2 shows the re
ection function of the trumpet (without mouth-

piece), and �gure 7.16 shows the bore reconstruction as calculated from this re
ectance

using the inverse scattering techniques described in [126]. For convenience, this piecewise

cylindrical reconstruction is plotted again in �gure 9.1. As we can see from the bore pro-

�le, the main bore of the trumpet is essentially cylindrical, with an initial taper widening.

This initial tapered section, which is usually referred to as the lead-pipe, is approximately

conical. With the mouthpiece inserted, this part communicates with the backbore of the

mouthpiece. Thus, an accurate model of the trumpet can be derived by approximating the

bore pro�le data with a cylindrical bore, plus a conical section to model the lead-pipe, and

modelling the remaining part of the reconstruction as the bell re
ectance RL(!). As seen

in section 8.1.3, the trumpet mouthpiece may be modelled with a hybrid model. With a

model available for all parts of the trumpet, the re
ection function and input impedance

of the transmission-line model of the complete trumpet with mouthpiece can be computed

with the piecewise modelling techniques explained in section 2.3, using either transmission-

line or waveguide matrices. This transmission-line model forms the continuous-time model

from which we derive the discrete-time model.

9.1.2 Wave Digital Model

The conical and cylindrical sections of the trumpet bore can be modelled in discrete-

time with the techniques described in chapters 4 and 6. Here we employed the \wave

digital junction" (described in section 6.1.1) rather than the \digital waveguide junction"
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(described in section 4.3.2) for simulation of wave scattering at the junctions at both ends

of the lead-pipe. The bell re
ectance is modelled with a digital �lter scheme such as that

explained in section 7.4, and the hybrid mouthpiece model is discretised with wave digital

modelling techniques as described in section 8.1.4. The complete wave digital model of

the trumpet then takes the form depicted in �gure 9.2. A 44:1kHz sample rate was used.

Fourth-order IIR �lters were used for approximation of viscothermal losses in the main

bore, and fractional delays were simulated by means of third-order Lagrange interpolators.

The bell is modelled with a re
ectance �lter RL(z) and a transmittance �lter TL(z), where

the latter approximates the transmittance as obtained from the re
ectance via equation

(7.3), and using a minimum-phase reconstruction to deduce a suitable transmittance phase

(see section 7.1.2).

Figure 9.3 shows the amplitude response of the bell re
ectance and transmittance. For

comparison, we also plotted the magnitude response of a third-order IIR �lter approx-

imation of the transmittance. The FIR+IIR �lter scheme explained in section 7.4 was

employed for digital approximation of the bell re
ectance. As discussed in section 4.4 and

6.1, a wave digital model is not stable if viscothermal losses are included in the conical

sections (i.e., the lead-pipe and the backbore). Therefore we do not include loss-�lters

in these sections. The backbore is very narrow at the input-end (2mm), and both the

lead-pipe and the backbore are narrow in comparison with the main bore, so viscother-

mal losses per unit length are relativaly high in these sections. On the other hand, both

the lead-pipe and the backbore are signi�antly shorter than the main bore, so it may be

expected that the neglected losses are still small in comparison with the overall losses.

Figure 9.4a shows the input impedance of the trumpet, as computed with the
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Figure 9.3: Re
ectance and transmittance of the trumpet bell.

transmission-line model and the wave digital model. The wave digital model result was

obtained by simply injecting a volume 
ow pulse into the mouthcup and tracing the

mouthcup pressure. An FFT of the resulting discrete-time signal then gives the input

impedance. The discrepancy between these results is almost entirely due to not taking

into account the viscothermal losses in the conical sections of the system; if we calculate

the transmission-line model with the same simpli�cation (i.e., with no losses in the lead-

pipe and the backbore), then the resulting input impedance curve (see �gure 9.4b) closely

matches that of the wave digital model.

9.1.3 Sound Radiation

The sound pressure prad just outside the bell may be used as a �rst approximation of the

sound radiated from the instrument, where we may expect that low-frequency components

are more accurately modelled than high-frequency components. This is due to various

simpli�cations used in the derivation of the wave digital model. Firstly, low-frequency

approximations are employed in the digital approximation of the bell re
ectance as well as

in the derivation of the mouthpiece model. As a consequence, the internal bore pressure

does not have the correct high-frequency content, and it is therefore not straightforward

to deduce the high-frequency components of the radiation pressure from the internal bore

pressure. Secondly, the e�ects of directivity would have to be taken into account for ac-

curate determination of the radiated sound at a speci�c angle and distance from the bell.

These e�ects are very small at low frequencies but are signi�cant at higher frequencies

[52]. We emphasise here that explicit inclusion of directivity e�ects would lead to pre-

cise computation of the radiation pressure only at frequencies within the bandwidth for

which the instrument response is modelled accurately in the �rst place. With respect to

obtaining a \perceptually representative" sound signal, it can in fact be argued that a
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Figure 9.4: Input impedance of the Boosey and Hawkes trumpet. (a) The transmission-line model
compared to the wave digital model. (b) The same comparison, but using an adapted transmission-
line model in which no losses are taken into account in the lead-pipe and the mouthpiece backbore.
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more suitable signal is obtained without taking into account the directivity e�ects. That

is, musical sounds are usually produced in a reverberant environment, and in such cir-

cumstances the sound quality that is heard at a reasonable distance from the instrument

is quite close to the spectral balance of the total radiated power [52]. The sound signal

obtained without taking into account the e�ects of directivity thus has approximately the

same spectral characteristics as the sound perceived under \normal" listening conditions.

This does not include the phase e�ects that are associated with sound reverberation, but

these can be modelled separately with the use of reverberation simulation techniques.

Appendix K contains two sound examples of the wave digital model of the Boosey and

Hawkes trumpet3.

9.2 The Selmer Clarinet

The clarinet and its ancestor the Chalumeau are essentially cylindrical instruments and

possess an odd-harmonic series, despite the small 
aring bell at the foot of the instrument

[52]. The modern clarinet usually contains a series of 24 holes which are controlled by

means of a key system that is arranged according to the principles developed by Boehm

[33].

9.2.1 Transmission-Line Model

In order to model the Selmer clarinet, the dimensions of the bore and the toneholes were

measured. The geometrical data of the toneholes is given in table 9.2.1. We consider the

remaining part of the bore (that is, the part starting directly after hole no. 1) as the bell.

The bore in fact starts to 
are before this point: this can be modelled by assuming a

conical taper between the holes. The bell pro�le is depicted in �gure 9.5. The instrument

is �tted with the Bundy mouthpiece that was used in the experiments in section 8.2.

The input impedance of the complete instrument can be calculated with a transmission-

line model. That is, the mouthpiece is modelled with the cylinder-cone model discussed

in section 8.2.2 and the toneholes are modelled with Keefe's transmission-line formulae as

discussed in section 5.1.2. The interhole bore sections are assumed to be either cylindrical

or conical and are modelled as lossy transmission-lines as explained in section 2.3. The

bell is modelled as a piecewise series of conical sections that is terminated by the open

end impedance. We note that the holes are in some cases spaced extremely closely. As

discussed in section 5.1, this means that we can not assume that there are no interactions

between the holes. However, for the clarinet these interactions are typically very small

3The signal of (ex5) is the impulse response (Green's function), and signal of (ex6) is the corresponding
radiation pressure.
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hole no. x 2a 2b tw 2R h state (F3)
24 68.4 15.0 2.1 12.7 10.4 3.1 (c)
23 78.7 15.0 4.0 7.3 10.4 3.3 (c)
22 104.3 15.0 5.5 7.0 10.2 2.6 (c)
21 114.0 15.0 5.5 7.0 10.3 3.4 (c)
20 127.9 15.0 5.7 7.0 10.4 3.4 (c)
19 142.6 15.0 4.0 6.5 9.8 3.1 (c)
18 153.2 15.0 7.6 10.3 - - (c)
17 157.2 15.0 5.0 7.0 10.1 2.3 (c)
16 165.6 15.0 5.0 8.3 - - (c)
15 185.2 15.0 5.0 7.0 10.3 2.4 (c)
14 198.3 15.0 6.4 8.3 - - (c)
13 202.9 15.0 6.1 7.0 10.2 3.0 (c)
12 203.7 15.0 6.3 7.0 10.2 3.1 (c)
11 221.8 15.0 8.2 7.5 - - (c)
10 232.6 15.0 5.0 7.0 10.3 3.7 (c)
9 296.6 15.0 7.2 6.0 12.0 2.4 (c)
8 312.6 15.0 8.6 7.8 - - (c)
7 314.6 15.0 6.3 6.5 17.1 2.5 (c)
6 339.0 15.0 8.5 7.8 - - (c)
5 362.0 15.0 9.3 7.8 - - (c)
4 391.6 15.0 10.3 5.0 17.1 2.5 (c)
3 420.2 15.0 12.6 5.0 17.1 3.3 (o)
2 453.6 17.3 11.3 4.5 17.2 3.5 (c)
1 486.8 21.0 10.1 4.5 17.2 3.8 (o)

Table 9.1: Tonehole and bore dimensions of the Selmer clarinet. All dimensions are given in
millimeters. x is the distance between the mouthpiece and the hole along the bore axis, a is the
main bore radius, b is the hole radius, and tw is the geometrical e�ective hole height. If a pad is
placed above the tonehole, the pad radius is given by R, and the distance between the pad and
the hole is indicated with h. The last column represents the �ngering for the note F3, where (c)
and (o) stand for \closed" and \open", respectively.
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Figure 9.5: Pro�le of the clarinet bell.
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at low frequencies [74]. We therefore model the bore without taking into account those

interactions.

9.2.2 Wave Digital Model

The main bore of the clarinet can be modelled in discrete time using the wave digital

modelling techniques discussed in chapter 6. The sample rate choice in this case depends

on the inter-hole bore distances. The shortest inter-hole bore section (Lmin = 0:8mm) is

that in between hole no. 12 and no. 13. To enable discrete-time modelling of this section,

the minimum allowable sample rate would be (c=Lmin) � 430kHz. To allow for a lower

sample rate, hole no. 13 was omitted from the model. Since this hole is part of a series

of three small-sized and closely spaced holes, we may expect that this simpli�cation (1)

causes only a small change to the instrument response, and (2) does not greatly reduce

the range of possible notes on the instrument. The second smallest inter-hole distance

is 2mm: the sample rate was then taken equal to be the smallest allowable multiple of

44:1kHz, which is fs = 176:4kHz. This sample rate choice allows for a simple conversion

to a conventional audio rate, so that audio playback of output signals on standard audio

equipment is possible.

As seen in section 2.3.5, wave propagation in a 
ared bore section may be modelled

with a small number of piecewise conical sections. Here we approximate the clarinet bell

pro�le with six sections, while the open-end re
ectance and transmittance are modelled

with a 5th and a 3rd order �lter, respectively. The cylinder-cone mouthpiece is modelled

in discrete-time as explained in section 8.2.3. Figure 9.6a shows the input impedance of

the complete clarinet bore as computed with the transmission-line model and the wave

digital model. The curves exhibit a slight di�erence in the position of the impedance

peaks, which is mainly due to the di�erent way in which the negative length-corrections

associated with the toneholes are modelled. That is, if one computes the transmission-

line model taking into account the length-corrections by reducing the bore lengths (as is

done in the wave digital model), the resulting impedance curve has peak frequencies that

match those of the wave digital model result (see �gure 9.6b). The remaining di�erence

in amplitude of the �rst impedance peak is due to the use of an inconsistent formulation

of the propagation constant4.

We note that the wave digital model results in �gure 9.6a and �gure 9.6b were com-

puted with inclusion of viscothermal losses in the conical sections of the model, and as a

consequence this model can only be used for computing the truncated impulse response.

In order to derive a model that contains no loss-�lters in any of the conical sections, each

conical section in the main bore was replaced with a cylindrical sections of mean radius.

4This problem has been discussed in section 4.3.3.
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Figure 9.6: Input impedance of the Selmer clarinet, with �ngering for note F3. (a): the
transmission-line model compared to the wave digital model where viscothermal losses are included
in all bore sections. (b): the same comparison, but with the transmission-line model adapted such
that the length-corrections associated with the toneholes are taken into account in the same way as
in the wave digital model. (c): the same comparison, with the wave digital model with all conical
sections in the main bore replaced by cylindrical sections, and no viscothermal losses taken into
account in the remaining conical sections in the bell and the mouthpiece.
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Figure 9.7: Wave digital modelling of the open-end of the clarinet bell.

The remaining conical sections (that in the mouthpiece part and those in the bell) were

modeled without loss-�lters. The comparison in �gure 9.6c shows that these adaptations

have extremely little e�ect on the accuracy of the model. This could be expected because

(1) the losses in the very short conical section in the mouthpiece are small in comparison

with the overall losses, (2) the angle of conicity of the conical sections in te main bore is

very small, and (3) the in
uence of the bell on the input impedance is usually very small.

9.2.3 Sound Radiation

As explained in section 5.3.3, the pressure radiated from a tonehole can be modelled by

simply delaying and scaling the pressure in the bore at the position of the tonehole. Apart

from the toneholes, a woodwind instrument also radiates sound from the open end of the

bell. It was shown in section 6.1.2 that an open end in a conical bore can be modelled

using a wave digital re
ectance �lter in combination with a WD-r unit (see �gure 6.5).

Figure 9.7 depicts the structure that results when we apply this method to discrete-time

modelling of the last section in the piecewise conical series model of the clarinet bell.

Although the wave variables P+
oe and P

�
oe are not equal to the actual travelling waves at

the open-end boundary, we may still compute the pressure at this point as the sum of

these wave variables:

Poe = P+
oe + P�oe: (9.1)

In order to compute the radiation pressure at a certain distance r from the bell, we consider

the bell as an isotropic source. The source-strength is then calculated as the 
ow across

the open-end radiation impedance:

Uoe =
Poe
ZL(!)

; (9.2)
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Figure 9.8: Magnitude response of the bell radiation �lter.

where ZL(!) is the radiation impedance as discussed in section 2.2.5. The radiation

pressure at a distance r may be computed in the same way as for a tonehole (see equation

(5.35)):

Prad(r) =

�
j!�

4�r

�
Uoe e

�jkr : (9.3)

Substitution of (9.2) into (9.3) yields:

Prad =

�
1

r

�
Hrad(!) e

�jkr Poe; (9.4)

where Hrad(!) represents the frequency-dependent element of the radiation, i.e., the radi-

ation �lter:

Hrad(!) =
j!�

4�ZL(!)
: (9.5)

Given that the term e�jkr represents pure propagation of the radiated wave into space,

the radiation pressure prad(r) may be modelled in discrete time by means of a cascade

of a �lter (Hrad(z)), a scaling factor (1=r) and a delay-line (see �gure 9.7). The scaling

factor may be joined with the radiation �lter expression but is kept separate here in

order to allow for continuous adjustment of the \listening point". What remains is the

design of the digital radiation �lter Hrad(z). For this purpose, we �rst lowpass �lter the

theoretical radiation �lter Hrad(!), using a cut-o� frequency of about 20kHz. As a result,

high-frequency components are strongly attenuated, which helps with suppression of the

aliasing e�ects that might occur in a full simulation. Both the amplitude-e�ects and the

phase-e�ects of the lowpass �ltering have very minor in
uences on the perception of the

�nal radiated sound pressure5. Figure 9.8 shows the magnitude response of the theoretical

5The upper limit of the human hearing range is about 20kHz, and the human hearing system is relatively
insensitive to phase-e�ects [108].
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Figure 9.9: Scheme for computation of the total radiated pressure as perceived at a speci�c point
in a non-reverberant space.

radiation �lter and a fourth-order IIR �lter approximation of the lowpass �ltered radiation

�lter.

The total radiated pressure as perceived at a particular \listening point" in a non-

reverberant space may be computed as the sum of the contributions of all toneholes and the

bell (see �gure 9.9). In principle, one delay-line is required for modelling the propagation

from source to listening-point for each of the sound sources. However, if the distance

between the listening-point and the instrument is suÆciently large, the di�erences in

propagation time become very small and a single, shared delay-line may be used for all

sources.

We note that, as in all previous wave digital model applications, we have omitted the

scaling factors that model the decrease of pressure as a wave travels away from the cone

apex. As explained in section 4.3.1, this does not a�ect the re
ectance at the bore entry.

For the trumpet simulation in section 9.1, the omission of the scaling factors causes the

radiated sound to have an incorrect amplitude, but since there is only one single sound

source, the spectral balance is una�ected. The clarinet on the other hand has a number

of di�erent sound sources. A simple way to take into account the e�ect of the scaling

factors on the radiated sound is to multiply the output of each sound source by the ratio

ae=ak, where ae is the bore radius at the mouthpiece entry, and ak is the bore radius at

the location of the sound source. For toneholes, this can be done by �rst multiplying the

value of � with this ratio6, so that the computational load of the tonehole models is not

6� is a constant scaling factor for computing the pressure radiated from a tonehole (see section 5.3.3,
equation (5.37)).
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Figure 9.10: Spectral magnitude of the mouthpiece and radiation pressure of the Selmer clarinet,
with �ngering for note F3.

a�ected.

Figure 9.10 displays a spectral comparison between the radiation pressure and the

mouthpiece pressure. These curves were computed as the Fourier transforms of the signals

obtained by injecting a 
ow (Dirac) input pulse into the mouthpiece (i.e., the mouthpiece

pressure spectrum is in fact equivalent to the input impedance). Referring to the coordi-

nate system in �gure 9.9, the listening-point was taken xlp = 0:5m, ylp = 0:5m, zlp = 0m.

As can be seen from �gure 9.10, the radiated pressure is highpass in comparison with the

mouthpiece pressure. Below cut-o� (about 1.5kHz for the clarinet), the radiation spectrum

exhibits a steady increase with frequency relative to the internal bore spectrum, which is

very much in agreement with the results reported by Fletcher and Rossing [52]. As with

the trumpet model in section 9.1, it may in fact be expected that the various simpli�ca-

tions made in the derivation of the wave digital model result in an approximation of the

radiated pressure that is good at low frequencies but poor at high frequencies. In this

case, the main deviations at high frequencies are introduced by simpli�cations concerning

the functioning of the toneholes. As discussed in chapter 5, we based our tonehole model

on Keefe's transmission-line formulation, which was veri�ed by Keefe with experimental

results only up to 5kHz. Therefore, as in the case of the trumpet model, the internal bore

pressure does not have the proper high-frequency content, and deducing the radiation

pressure from the internal bore pressure will not give accurate results at high frequencies.

The reasons brought forward in section 9.1.3 for not including the e�ects of directivity

also apply to the clarinet. That is, we postulate that a perceptually representative sound

signal may be obtained without taking these e�ects into account. Appendix K contains

two sound examples of the wave digital model of the Selmer clarinet7.

7The signal of (ex7) is the impulse response (Green's function), and signal of (ex8) is the corresponding
radiation pressure.
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9.3 Conclusions and Future Work

A trumpet and a clarinet bore have been simulated in this chapter. The techniques used

for this purpose largely fall within the \wave digital modelling approach" outlined in

section 3.4, hence we may refer to these models as \wave digital models". Various mea-

surements were carried out in order to capture a number of acoustical properties of these

instruments. The dimensions of the bore and the bell of the Boosey and Hawkes trumpet

were determined experimentally by applying bore reconstruction techniques to pulse re-


ectometry measurement results. The dimensions of the bore, the toneholes and the bell

of the Selmer clarinet were directly obtained via geometrical measurement. Comparisons

were made between the input impedance as calculated with a transmission-line model and

results obtained from a wave digital model. For both instruments, a reasonable agreement

between continous-time results (i.e. the transmission-line model) and discrete-time results

(i.e. the wave digital model) was found, and the causes of the small di�erences between

these results have been indicated. We emphasise that although we have limited ourselves

to simulation of the trumpet and the clarinet, most techniques that have been employed

here are also directly applicable to the simulation of other wind instruments.

With respect to improving the wave digital model of the trumpet bore, two issues

come to mind. Firstly, the accuracy would be increased signi�cantly if viscothermal losses

were taken into account in the lead-pipe and the mouthpiece backbore. As explained

in section 4.4, the methods employed in the presented study do not result in a stable

discrete-time model when such losses are included in the delay-loops of the conical sections.

Secondly, a complete simulation should contain a model of the valves, so that the bore

length can be adjusted in a realistic way. In the current simulation, the bore length is

varied by simply adjusting the lengths of the delay-lines that implement wave propagation

in the main bore. This method is in fact suitable for simulation of a trombone slide,

but clearly forms only an approximate solution to modelling the functioning of the three

piston-controlled valves of the trumpet.

The wave digital model of the clarinet bore could also be improved. As seen in

section 9.2.2, the resonance frequencies appear to be sensitive to the way in which the

length-corrections associated with the toneholes are taken into account. In the original

transmission-line model, the length-corrections are incorporated using a series inertance

formulation, while the simpler solution of decreasing the bore length on either side of the

hole is used in the wave digital model. However the possibility of direct simulation of the

series inertances is not investigated here. According to regular wave digital theory, this

would lead to instabilities because the inertances associated with the length-corrections

are negative. However, the inertances associated with bore conicities in some cases also

become negative, and in cases where viscothermal losses are ignored, this does not lead
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to any instability problems in the current simulations. So perhaps the inclusion of the

length-corrections by means of negative inertances would not destabilise the wave digital

model. The fact that the re
ection function as computed with the transmission-line model

is always convergent is a hint that this might indeed be possible.

Finally, we envisage that for both instruments a more accurate radiation pressure can

be obtained by applying a �lter that compensates for high-frequency deviations due to

the low-frequency approximations used in the wave digital model derivation. This �lter

could for example be designed to approximate the quotient of a measured and a simulated

sound spectrum.
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Chapter 10

Single Reed Excitation

The sound production mechanism of single reed woodwind instruments has been widely

studied in the past century. Many features that were observed in experiments with real

woodwinds, can be explained using relatively simple models of the interaction between the

excitation system (the reed) and the resonator (the air column). The �rst steps in develop-

ing theories on this interaction were made by musical acoustics pioneers such as Helmholtz

[62], Lord Rayleigh [111] and Bouasse [32]. This research is for a large part characterised

by qualitative descriptions of the sound production mechanism in woodwinds. Starting in

the early 1960s, the research progressed towards the development of a solid mathematical

framework for the theory of sustained oscillations in woodwinds, with contributions by

various researchers, such as Backus [16, 17], Nederveen [101], Benade [22], Worman [167],

Wilson and Beavers [166] and Thompson [144]. More recently, Hirschberg et al. [65, 64]

provided some essential insight about these theories by looking at the problem from an

aero-acoustical point of view, and Grand et al. [61] have improved on theoretical deriva-

tion of the clarinet spectrum. However, most of these theories are limited to the regime

of small vibrations. This strongly simpli�es the mathematics, and allows for a relatively

straight-forward analysis of non-linear woodwind oscillations. The reed in this approach is

usually represented by a linear oscillator. While such analysis provides signi�cant insight

in the basic mechanisms of self-sustained oscillation, it does not include the phenomenon

of \reed beating", which occurs at larger amplitudes. Schumacher [123, 124], Gilbert [59]

and more recently Kergomard et al. [83] provide methods for analysing non-linear oscil-

lations taking into account the reed beating phenomenon. In these studies, the reed is

still represented by a simple linear oscillator, but inelastic collisions with the mouthpiece

are now assumed to occur under beating conditions. However, as was already suggested

by Thompson [144], the reed may not behave as a linear oscillator even when it is not

beating. Nevertheless this work provides fundamental insight into the behaviour of single

reed woodwinds at large amplitude vibrations. Stewart and Strong [140] and Sommerfeldt

203
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and Strong [137] developed the �rst distributed reed model of the reed, in which many

fewer simplifying assumptions were made about the mechanical behaviour of the reed. In

particular, their models include the e�ect of the reed curling up to the mouthpiece lay,

which is a non-linear phenomenon. Starting from the work by Meynial [96], Ducasse [48]

and Gilbert [57], Gazengel [55] has formulated theories for an \equivalent harmonic os-

cillator model". That is, he has presented a method for determining how the parameters

of a the lumped oscillator model vary over time, if this model is to behave in a similar

(non-linear) way as a distributed reed model. However, his study is rather global and

theoretical, not taking into account various characteristic details of the reed/mouthpiece

system of a particular woodwind instrument.

The main aim of the research presented in this chapter is to develop a non-linear lumped

oscillator model that accurately describes the behaviour of the reed/mouthpiece system

of a clarinet. The approach we take is to combine the distributed modelling techniques

developed in [140, 137] with the parameter determination methods developed in [55].

The chapter is structured as follows. In section 10.1, the basic mechanisms involving

the interaction between the reed and the air column are discussed. In section 10.2, a

distributed model of the reed/mouthpiece system, including a detailed description of the

techniques for numerical simulation and parameter determination, is presented. Then in

section 10.3, the principles of the lumped oscillator model parameter determination are

discussed, and the method is applied to the distributed model. Finally in section 10.4,

the resulting non-linear reed oscillator is applied in a full simulation of a pipe blown by a

reed, and various aspects and properties of this system are discussed.

10.1 Reed and Air Column Interaction

10.1.1 The Basic Mechanism

In single reed woodwinds the oscillations are excited by means of a reed that is clamped

to the mouthpiece of the instrument (see �gure 10.1). The reed is usually made of cane,

although plastic versions exist. The generation of sustained oscillations in reed-driven

instruments is based on the interaction between the air column and the reed. The basic

mechanism works as follows. The mouth pressure (pm) provided by the player causes

an air
ow through the reed aperture. This mouth pressure tends to close the reed, so

that the aperture starts to decrease while a pressure wave (p+) is \released" into the air

column. Re
ections of this pressure wave occur at various discontinuities in the bore of

the instrument, which results in pressure waves travelling back and forth through the air

column. Hence the total pressure p in the mouthpiece, which is the sum of the forward-

and backward-propagating waves (p = p+ + p�), starts to vary. This leads to the reed
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Figure 10.1: Cross-sectional view of a single reed woodwind mouthpiece.

being driven into motion by the pressure di�erence (pm�p) across it. Periodic oscillations
can be sustained at frequencies near the resonance frequencies of the air column. For an

inward-striking reed (such as a woodwind single reed), the fundamental frequency of a

sustained oscillation lies just below one of the input impedance maxima of the air column

[52]. Excitation is not possible under all circumstances: only when the player's embouchure

tension and blowing pressure are such that the 
ow through the reed channel decreases

with blowing pressure are oscillations sustained [22]. Also, if the mouth pressure exceeds

a certain level, the reed is blown to full closure [52, 167].

10.1.2 An Elementary Valve Model

The interaction between the reed and the air column can be described mathematically with

an elementary valve model that was originally proposed by Hirschberg et al. [65], and has

since been applied for both synthesis [54] and analysis [81] purposes. A schematised view

of this model is depicted in �gure 10.2. The reed is represented by a mechanical oscillator

that acts as a pressure-controlled valve. The equation of motion for this system is1:

d2y

dt2
+ g

dy

dt
+ !20 y =

�p

�
; (10.1)

where y is the reed displacement, g is the reed damping factor, !0 is the angular resonance

frequency, and � is the mass per unit area. The 
ow of air that is blown into the instrument

is regulated by the varying gap between the reed and the mouthpiece. Note that equation

(10.1) in fact describes the behaviour of the reed/mouthpiece system, which is rather

di�erent than the behaviour of a clamped reed on its own. In particular, the motion of

the reed is restricted as it is in contact with both the mouthpiece and the lip. As a result,

1We note that the direction of the reed motion is chosen as positive when the reed moves towards
closure, which is the same as in the distributed model presented in section 10.2, but opposite to what is
conventionally used for the elementary valve model.
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Figure 10.2: Schematised view of a single reed woodwind mouthpiece.

the determination of the parameters g, !0 and � is far from trivial.

The acoustic pressure can be calculated as the linear response of the instrument air

column. The total air 
ow u into the instrument is the sum of two components, the 
ow

uf entering through the reed channel, and the 
ow ur that is induced by the motion of

the reed:

u = uf + ur: (10.2)

It is assumed that the reed-induced 
ow is proportional to the velocity of the reed:

ur = Sr � @y
@t
; (10.3)

where Sr is de�ned as the e�ective or equivalent 
ow surface of the reed. The 
ow through

the reed channel is assumed to obey:

pm � p =
�

2

h uf
w h

i2
; (10.4)

where w the width and h = H � y is the height of the reed channel. By means of

experiments with a clarinet mouthpiece, Backus [17] derived a semi-empirical version of

equation (10.4):

(pm � p)2=3 =
uf

Bh4=3
; (10.5)

where B is a constant. The di�erent relation between 
ow, pressure drop and reed opening

was assumed by Backus to be due to the particular wedge-shape of the slit of the clarinet

reed/mouthpiece system, in combination with the 
exibility properties of the reed. How-

ever, measurements by Gilbert [57] did not con�rm this result. Instead it was found that

equation (10.4) applies, although no reliable dynamic data was found for very small reed

openings. Hirschberg et al. [64] have pointed out that an empirically derived exponent

does not have any simple physical meaning or universal value. Equation (10.4) describes

the 
ow behaviour in the static regime, and it is assumed that it remains valid in the
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dynamic regime. However, in the dynamic regime the inertia of the air in the reed channel

needs to be taken into account [17]:

pm � p =
�

2

h uf
wh

i2
+Mslit

@uf
@t

: (10.6)

Backus [17] measured the reed channel inertia as a function of the reed opening. According

to Nederveen [101], Thompson [144] and Gazengel [55], this inertia is generally small in

comparison with the acoustic resistance implied in (10.4), and may therefore be neglected.

Worman [167] assumes that there is also a \Bernoulli force" acting on the reed. How-

ever, Hirschberg et al. [65] have pointed out that the calculation of this force in [167] is

questionable, since it is based on the assumption that there is a pressure recovery in the

mouthpiece. The use of equation (10.4) implies that 
ow separation occurs at the end of

the reed channel, which results in the formation of an air jet. Due to turbulent mixing of

the jet with the air in the mouthpiece, the kinetic energy in the jet is dissipated, and as

a consequence, there is no pressure recovery in the mouthpiece. While it is not excluded

that forces of the Bernoulli type are present in the reed channel, it is not directly clear over

what length of the reed channel they are active, and whether they increase or decrease

with channel aperture [65]. Following the studies in [65, 64], we therefore choose to use

an elementary valve model in which no Bernoulli forces are taken into account.

Finally we note that for a pressure di�erence that can become both positive and

negative, (10.4) is written:

pm � p = Sgn
�

2

h uf
wh

i2
; (10.7)

where Sgn is the sign of the pressure di�erence. If channel inertia is neglected, the pressure

di�erence and the 
ow through the channel always have the same direction, thus Sgn is

in this case also the sign of uf .

10.1.3 Reed Beating

There are two non-linearities in the excitation system described above. For small oscilla-

tions, the reed is relatively free to move, and the only non-linearity arises from the relation

between 
ow, reed opening and pressure di�erence (equation (10.7)). For large oscillations

however, the reed starts \beating" against the mouthpiece lay. The common method for

simulating reed beating is based on the assumption that when the reed closes, an inelastic

collision occurs. This is usually implemented by imposing the following scheme:

h =

(
H � y; if y � H

0; if y > H
: (10.8)
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In case of full closure (i.e., h = 0), the velocity of the reed is usually also set to zero. This

scheme introduces a discontinuity in the time derivative of u, y and p [81], and represents

a second non-linearity of the system. While this reed-beating model has been applied

frequently [124, 77, 59, 81, 55, 54], it is widely recognised that the interaction between

reed and mouthpiece is in reality more complicated [101, 144, 57, 81, 55, 140, 137]. As the

reed moves to closure, it must bend against the lay. In other words, there is not a �xed

point at which the reed can not move further, but instead the reed is gradually stopped

while curling up to the lay. During this process, the part of the reed that is pressed against

the lay is e�ectively immobilised, so that the properties of the reed continuously vary over

time.

Stewart and Strong [140] point out that the curling phenomenon would have to be

explicitly added to the elementary model, by varying the parameters in (10.1), whereas a

distributed model of the reed/mouthpiece system would incorporate it automatically. The

distributed modelling approach is the subject of the next section.

10.2 A Distributed Model of the Reed/Mouthpiece System

10.2.1 The Single Reed Modelled as a Non-Uniform Bar

Consider a straight bar of uniform thickness b and width w (see �gure 10.3). Suppose

that this bar is driven by a force per unit length F (x; t), where x indicates the position

along the bar length, and t indicates time. If damping e�ects are ignored, and the bar is

made of homogeneous and isotropic material, the transverse vibrations are governed by

the following equation [116]:

�A
@2y

@t2
(x; t) +

@2

@x2

�
Y I

@2y

@x2
(x; t)

�
= F (x; t); (10.9)

where y(x; t) denotes the transverse displacement of the bar, A = w b is the cross-section,

� is the density, and Y is the Young's modulus. The term I = A�2 is a mathematically

convenient term, where � = b=
p
12 is the radius of gyration of the bar. The contribution

of torsional and longitudinal waves as well as 
exural waves in the xz-plane are neglected

in this formulation.

A woodwind reed may be considered as a bar of length L and non-uniform thickness,

clamped at one end (x = 0) and free on the other (x = L). For such a system, the

boundary conditions are [52]:

y(0; t) = 0 ;
@y

@x
(0; t) = 0;

@2y

@x2
(L; t) = 0 ;

@3y

@x3
(L; t) = 0: (10.10)
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Figure 10.3: Bar Dimensions.

The reed thickness is a slowly varying function of the spatial coordinate x, which may be

taken into account by simply writing the cross-section A and moment I as a function x

[116]. Furthermore, a realistic model of the reed involves some form of damping. A freely

vibrating bar is subject to two di�erent types of damping. The main damping is due to

viscoelastic friction within the bar, and further losses occur due to damping by the 
uid

surrounding the bar. In a study on transverse vibrations of a xylophone bar [36], it is

shown that these two damping e�ects may be incorporated by adding two terms to eq.

(10.9):

�A(x)

�
@2y

@t2
(x; t) + 
B

@y

@t
(x; t)

�
+
@2

@x2

�
Y I(x)

�
1 + �

@

@t

�
@2y

@x2
(x; t)

�
= F (x; t); (10.11)

where � and 
B are coeÆcients that represent the magnitude of the viscoelastic losses and

the 
uid damping, respectively.

10.2.2 Numerical Formulation

In order to simulate the distributed reed model in discrete-time, �nite di�erence methods

are applied. This involves spatial and temporal discretisation: the bar is divided into N

sections, which corresponds to a spatial grid of (N + 1) grid-points. Extra grid-points are

added at both ends in order to enable numerical formulation of the boundary conditions.

The spatial sampling step is then �x = L=N and the temporal sampling step (sampling

period) is T = 1=fs, where fs is the sampling frequency. In our notation, the index i

indicates the spatial coordinate xi = i�x, and the discrete-time point n indicates the

time tn = nT .

Both explicit and implicit �nite di�erence schemes can be used in order to approximate

the spatial and temporal derivatives of the bar equation. In the case of a non-uniform

bar, an implicit �nite di�erence scheme is required in order to preserve stability [36]. Here

we will apply the \�-scheme" described in [36], in which the second term on the left-hand
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Figure 10.4: Comparison between using � = 1=4 and � = 1=2. Both �gures show the spectral
magnitude of the impulse response of a straight uniform bar clamped at one end, as computed
using the numerical model. The dashed lines indicate the positions of the natural frequencies of
the bar, as predicted by theory. The impulse responses were computed using fs = 200kHz and
N = 200.

side of equation (10.11) is approximated by:

@2

@x2

�
Ii

�
1 + �

@

@t

�
@2y

@x2
(xi; tn)

�
� �

�
(1 + �) Æ2x[Ii(Æ

2
xy)i]

n+1 + (1� �) Æ2x[Ii(Æ2xy)i]n�1
� � � �

+ (1� 2�) Æ2x[Ii(Æ
2
xy)i]

n; (10.12)

with � = � fs and where

Æ2x[Ii(Æ
2
xy)i]

n = [Ii+1y
n
i+2 � 2(Ii+1 + Ii)y

n
i+1 + (Ii+1 + 4Ii + Ii�1)y

n
i � � �

�2(Ii + Ii�1)y
n
i�1 + Ii�1y

n
i�2]=

�
�x4

�
: (10.13)

It can be shown when such a scheme is used, the numerical simulation remains uncondi-

tionally stable if � � 1=4 [36]. The main advantage of an unconditionally stable scheme is

that it allows to us to choose N and fs independently.

It is well known that any discretisation process involves frequency warping e�ects. It

is important to minimise these e�ects such that the natural frequencies of the bar are

well approximated. Using a �-scheme, the minimum warping for unconditionally stable

simulations is achieved with � = 1=4. It is interesting to note that � = 0 corresponds

to using an explicit scheme, and that the �nite-di�erence scheme used in the numerical

simulations in [140, 137] corresponds to � = 1=2. Figure 10.4 demonstrates the di�erence

in warping e�ects between using � = 1=4 and � = 1=2 for the case of a uniform bar
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with 
uid damping only (i.e., � = 0). For this case the exact resonance frequencies

can be analytically determined [84]. Apparently, the 1=4-scheme \maps" the complete

continuous-time frequency-axis on to the complete discrete-time frequency axis. In this

respect, the 1=4-scheme resembles the use of the bilinear transform (see, e.g., [109]). On

the other hand, the 1=2-scheme maps the continuous-time frequency-axis on to only half

of the discrete-time frequency-axis, which corresponds to about \twice" the amount of

frequency warping.

Using the approximation in (10.12), and applying simple central di�erence formulae

for the time-derivatives in (10.11), a numerical formulation of the system is obtained (see

appendix H):

�Ai

�
(1 + 
) yn+1i � 2yni + (1� 
) yn�1i

�
+ T 2 YDn

i = T 2 Fn
i ; (10.14)

with 
 = 1
2
B T and where Dn

i denotes the spatial derivative approximation in (10.12).

The implicity of this equation requires the solution of the system in matrix form. The

�nal matrix equation takes the form:

y(n+ 1) = An � y(n) +An�1 � y(n� 1) +AF � F(n); (10.15)

where y(n + 1), y(n) and y(n� 1) represent the displacement vector at successive time

instants, and F(n) is the force per unit length vector. The coeÆcients of the matrices An,

An�1 and AF are obtained by solving the initial system of simultaneous equations that

results from combining the boundary equations with the di�erence equation (10.14), for

the vector y(n+ 1) (see appendix H).

10.2.3 The Interaction with the Mouthpiece and the Lip

In a single reed woodwind instrument, the reed is clamped to the mouthpiece by means

of a ligature (see �gure 10.5). Furthermore, the player pushes the lip against the reed,

such that when the reed is in rest position, a small gap (about 0:4mm) between the reed

tip and the lay remains. These reed/mouthpiece and reed/lip interactions cause the reed

to behave signi�cantly di�erently to a reed that is simply clamped at one end and free to

move at the other.

As the reed oscillates, collisions occur between sections of the reed and the mouthpiece.

It is usually assumed that these collisions are fully inelastic [140, 137, 81]. This corresponds

to a dissipative force applied to a section of the reed over the period that it collides with the

lay. However, the interaction between reed and mouthpiece can never be fully explained

in terms of dissipative forces. In the case of static contact (in which case no dissipative

forces exist), some form of contact-forces (that is, external forces exerted on the reed by
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Figure 10.5: Schematic representation of the reed/mouthpiece system. The reed is clamped with
the ligature at x = 0. The small arrows indicate the forces acting upon the reed due to a pressure
di�erence across it.

the lip and the mouthpiece) must be present in order to hold the reed in place. If we

assume that the permanent deformation of either the reed or the mouthpiece due to these

static contact-forces is negligible2 , then it follows that, at least in the static case, the

contact-forces must be elastic. Since part of the reed is e�ectively immobilised by the lip

(and pressed against the mouthpiece lay), elastic forces must be continuously present in

the reed/mouthpiece system.

The lip is assumed to be in continuous contact with the reed over a certain length,

which provides extra damping to the reed/mouthpiece system. Following the approach

taken in [137], we take this extra damping into account by increasing the 
uid damping

value of those parts of the reed that are in contact with the lip. Apart from damping, the

lip also exerts an elastic restoring force on the part of the reed with which it is in contact.

The exact form of the contact-forces that model the interaction with the lip and the

mouthpiece is presented here directly in numerical form. Recall equation (10.15), that

gives the �nal numerical formulation of the reed/mouthpiece system. The force vector

F(n) in this equation contains several components:

F(n) = F�p(n) + Flay(n) + Flip(n); (10.16)

where F�p(n) is a vector that represents the force per unit length due to the pressure

di�erence �p(n) across the reed. This pressure di�erence is assumed to be uniformly

distributed over the reed surface. Thus for all sections (i) we have:

(F�p)
n
i =

�p(n)

w
: (10.17)

2This is a reasonable assumption, because otherwise it would have to be assumed that either the reed
or the mouthpiece exhibits signi�cant permanent deformation each time they are pressed together.
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The vectors Flay(n) and Flip(n) represent the contact-forces that model the interaction

with the mouthpiece and the lip, respectively. The lip-forces are modelled according to

linear elasticity:

(Flip)
n
i =

(
Klip

�
(ylip)i � bi � yn�1i

�
; if i 2 ilip

0; otherwise
; (10.18)

where (ylip)i and bi respectively are the vertical lip position and reed thickness at section

(i), Klip is the lip sti�ness per unit length, and ilip is a vector that indicates the reed

sections that are in contact with the lip. We do not claim that modelling the lip with

Flip forms a realistic simulation of the interaction between a human player's lip and the

reed. It is merely the simplest possible restoring force, which is intended as a �rst-order

approximation in the case of using an arti�cial lip (see section 10.2.4).

The interaction with the mouthpiece is slightly more complicated, because collisions

occur during reed oscillation. The contact-forces contain a dissipative as well as an elastic

component:

(Flay)
n
i = (Fel)

n
i + (Fdis)

n
i ; (10.19)

where (Fel)ni is an elastic restoring force per unit length, and (Fdis)ni is a dissipative force

per unit length. The elasticity term is nonzero only in the case of contact between the

reed and the mouthpiece, and the dissipative term is nonzero only when a collision is

anticipated. The condition of contact is:

yn�1i > (ylay)i; (10.20)

and the elastic restoring force is formulated

(Fel)
n
i =

(
Klay

�
yn�1i � (ylay)i

�
; if condition (10.20) is ful�lled

0; otherwise
; (10.21)

where Klay is the mouthpiece contact sti�ness per unit length3 and (ylay)i is the local

position of the mouthpiece.

The dissipative force (Fdis)ni is chosen such that it nulli�es the kinetic energy of any

reed section (i) that is \about to collide" with the mouthpiece. This force, that is applied

over a single sampling period, is computed as follows. At each instant of the numerical

simulation, we predict the next value of the displacement vector:

ŷ(n+ 1) = An � y(n) +An�1 � y(n� 1) +AF � F̂(n); (10.22)
3It is assumed here that when the reed and the mouthpiece are pressed together, the mouthpiece com-

pression is negligible compared to the reed compression. Hence the mouthpiece contact sti�ness represents
an elasticity coeÆcient that corresponds to compression of the reed.
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where F̂(n) = F�p(n) + Fl(n) contains only the forces due to the lip and the driving

pressure di�erence. Using this displacement prediction, we compute a velocity vector:

v̂(n) =
ŷ(n)� y(n� 1)

T
: (10.23)

Note that eq. (10.23) gives a reasonable prediction of the velocity for the time period

t = nT to t = (n + 1)T . Suppose now that an inelastic collision occurs within this time

period. We can check whether a collision actually takes place for each section (i) with the

condition:

ŷn+1i > (ylay)i and yni < (ylay)i: (10.24)

For the purpose of calculating (Fdis)
n
i , we only need to take into account the kinetic energy

of the reed section. Therefore we may temporarily assume that no forces are currently

acting upon a particular reed section (i) (i.e., we ignore the shear forces, the driving forces

and the lip forces). In that case an inelastic collision with the mouthpiece is characterised

by the total reduction of velocity of this reed section. That is, just before the section

collides with the mouthpiece it has a velocity vni , and directly after the collision, it has a

zero velocity:

vn+1i = 0: (10.25)

The most straight-forward way to model this would be to apply an impulsive force per

unit length Fimp(t) for the duration of the collision. In that case, the impulse-momentum

theorem law applies [165]:

Mi�v =

t=t2Z
t=t1

Fimp(t)dt; (10.26)

where �v is the change in velocity over a period of collision (t = t1 to t = t2), and Mi is

the mass per unit length:

Mi = �w bi: (10.27)

In the numerical model, we can only change the force at discrete-time instants. Avanzini

[12] has suggested to nullify the kinetic energy of the reed by applying a constant dissipative

force over the period t = nT to t = n(t+ T ):

Mi

�
vn+1i � vni

�
= (Fdis)

n
i � T: (10.28)

Substitution of (10.25) and solving (10.28) for (Fdis)ni gives:

(Fdis)
n
i = �

�
Mi

T

�
vni : (10.29)
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Thus an inelastic collision of a reed section with the mouthpiece can be simulated within

the numerical model by applying a damping �Mi=T at the moment that the reed hits the

mouthpiece:

(Fdis)
n
i =

(
�
�
Mi

T

�
v̂ni ; if condition (10.24) is ful�lled

0; otherwise
: (10.30)

In summary, the method applies a dissipative force at t = (n)T to a certain reed section

(i), if it is anticipated (according to (10.24)) that this reed section will hit the mouthpiece

between t = (n � 1)T and t = nT . Note that this nulli�es the current kinetic energy of

the reed section, but does not necessarily prevent it from moving \into" the mouthpiece.

This is because the section also has potential energy, provided by the shear and external

forces applied to it. The elasticity term in (10.19) represents the restoring forces that are

required to hold the reed section in place when in contact with the mouthpiece.

10.2.4 Determination of the Model Parameters

The equations presented in the last section yield the basic numerical model of the

reed/mouthpiece system. In order to simulate the motion of a particular woodwind reed,

it is essential to run the simulation with appropriate physical parameters. Some of these

parameters can be derived directly from measurements on reeds and mouthpieces of a real

woodwind instrument. Other parameters, such as the damping provided by the lip, are

more diÆcult to establish via measurement. For such parameters, we resort to the method

of running the numerical simulation and adjusting the parameter such that the simulation

exhibits a behaviour similar to the behaviour observed in real reed/mouthpiece systems.

Here we applied this approach to the clarinet.

Measurements on the Mouthpiece

A clarinet mouthpiece lay typically has a relatively 
at part at the end that connects

to the instrument. When in rest position, and with no lip pressure supplied, the reed

is pressed to this 
at part. The remaining part of the lay is slightly curved, such that

when in motion, the reed curls up to the lay. Using a travelling microscope, the pro�le

of the curved part of the lay of three di�erent mouthpieces was measured4. The spatial

coordinates were de�ned such that the clamping point corresponds to x = 0. The data for

each mouthpiece was �tted with a fourth-order polynomial function. In order to ensure

that the resulting �tting curve smoothly connects to the 
at part of the lay, the following

4A Bundy, a Calteau, and a Reginald Kell mouthpiece.
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conditions were imposed on the polynomial �tting function G(x):

G(xc) = 0 and
dG

dx
(xc) = 0; (10.31)

where x = xc is the point where the 
at and the curved part connect. The measured pro�le

data and the polynomial �ts are depicted in �gure 10.6. The measured mouthpieces have

an overall similar shape. It must be noted however that our simulation results indicated

that small di�erences in shape can have a quite dramatic e�ect on the curling behaviour

of the reed.

Measurements on the Reed

Various measurements were carried out in order to determine the properties of a clarinet

reed. A plastic-coated reed was preferred instead of cane reed, because it has the properties

of a \wet" reed5.

The reed thickness cannot be measured directly as a function of x, since it is not

constant over its width w (see �gure 10.8). Therefore we measured both the minimum

thickness (at the edges) and the maximum thickness (central). This was done for 18 points

along the length of the reed. For each point, an e�ective thickness, i.e. the thickness of the

reed shape with equivalent rectangular cross-section, can be calculated. This calculation

was based on the assumption that for each point along the length, the curvature over

the width has a circular shape. Figure 10.7 shows the obtained data points and the

corresponding e�ective thickness curve. The density of the reed material was determined

by weighing the total reed and dividing this by its volume.

For the measurements of the elastic and damping properties of the reed, experiments

were carried out with a reed clamped between two perspex plates, with a thin piece of

hard rubber �tted in between on the curved side of the reed (see �gure 10.8). The reed

was excited using a horn driver at a distance of about 2mm. The response of the reed to a

sinusoidal pressure signal was measured using an infra-red sender/receiver system, placed

on the other side of the reed, and this signal was digitally recorded for further analysis.

Hence both the driving and the detection are non-contact in this setup. The experiments

were carried out in an anechoic chamber.

In the �rst step of the experiment, the reed was simply excited by plucking, and a rough

estimation of the positions of the �rst three resonance frequencies was made with the use

of a Fourier transform of the resulting response. In the second step, the reed was driven at

the �rst mode frequency (1:4kHz), using a high-amplitude signal from the horn driver. The

5A normal, non-coated cane reed has di�erent elastic and damping properties when humid (such as
under playing conditions) from when it is dry. A plastic-coated reed is designed to have properties similar
to the properties of a normal reed under playing conditions, independent of humidity.
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Figure 10.6: Lay pro�le of three di�erent clarinet mouthpieces.
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Figure 10.8: Cross-sectional views of the clamping arrangement used in the experiments on the
clarinet reed.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

viscoelastic constant (10−6 s)

m
ag

ni
tu

de
 (

dB
)

first mode 
second mode

Figure 10.9: Dependence of the amplitude of the �rst two modes of the reed/mouthpiece system
on the viscoelastic constant �, as computed with the numerical simulation.

frequency of the driving signal was �ne-tuned until the reed response reached a maximum,

after which the amplitude of the driving signal was measured with a microphone. Then,

after sudden suppression of the driving signal, the damping factor of the �rst mode was

derived from the decay pattern of the measured waveform. In a third step, the reed was

driven at its second resonance frequency, using the same driving amplitude as was used

in the second step. The second and higher modes are very strongly damped however, and

it was found that the amplitude of the horn driver at this frequency is simply insuÆcient

for higher-mode excitation that can be measured with the experimental setup. In the

last step of the experiment, the minimum amplitude that is required to excite the �rst

mode was measured. Taking into account the frequency-dependence of the microphone,

the di�erence between that amplitude and the amplitude that was used in the attempt

to excite the second mode was found to be about 32dB. Given that the infra-red receiver

system has a 
at magnitude response in the frequency area of interest, it follows that the

response at the �rst mode must be at least 32dB stronger in amplitude than the response

at the second mode.

The obtained information was used to �ne-tune the numerical simulation as follows.

The only unknown parameter which in
uences the �rst resonance frequency of the reed
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is the Young's modulus. Hence we adjusted Y until the simulation (with the lip- and

the lay-interaction de-activated) exhibited the proper �rst mode frequency when excited

with an impulse. Next, the in
uence of the damping constants � and 
B on the damping

of individual modes was established. Empirically it was found that the 
uid damping

constant 
B has approximately the same damping e�ect on all frequencies. On the other

hand, the viscoelastic damping causes a distinctly frequency-dependent damping e�ect.

The damping e�ect it has on the �rst two modes of the reed was determined by running

the simulation several times, keeping 
B constant and varying �. Figure 10.9 shows the

resulting amplitudes for both mode frequencies as a function of �. In the experimental

stage, it was found that the di�erence in amplitude between the �rst and the second mode

must be at least 32dB. In the numerical model, this di�erence only depends on �, and from

the data displayed in �gure 10.9, it can be deduced that the viscoelastic damping factor

must be at least � = 6:0�7s in order to have the same di�erence in dB. The 
uid damping

value was then determined by adjusting it until the simulation exhibited the appropriate

damping behaviour at the �rst resonance frequency.

Measurements on the Arti�cial Lip

The properties of the human lip are not easily determined, due to its complex substance

and structure. Moreover, an arti�cial lip is usually employed in experimental setups in

which the clarinet is machine-blown (see, e.g., [16, 137, 57, 67]). We therefore resort to

modelling the \lip" of a particular arti�cial blowing system6. The lip in this system is

represented by a balloon �lled with water. We assume that the use of the balloon-lip is

justi�ed to some extent by the fact that musically acceptable notes can be produced with

the arti�cial blowing system, although it is obviously inferior compared to a human lip in

terms of embouchure control.

The elastic properties of the balloon-lip were determined by measuring the compression

�ylip of the balloon due to the gravitational force per unit length Fg of a known weight.

The weight consisted of a clarinet reed with a piece of metal on top of it, and was placed

on the balloon-lip such that the pressure distribution on the lip is the same as it is under

normal playing conditions. The compression of the balloon due to the weight was measured

using a travelling microscope. This procedure was carried for various weights, and the

sti�ness per unit length of the lip was determined as a the steepness of a linear �t to the

data Fg versus �ylip.

In the simulation, the lip was positioned 12mm from the reed tip, which is similar to

6Currently, an arti�cial blowing system for the clarinet is being used in the historical museum of musical
instruments in Edinburgh, for the purpose of demonstration of the functioning of musical wind instruments
[34]. This system has been used in the present study for qualitative observation of the behaviour of the
clarinet reed.



220 CHAPTER 10. SINGLE REED EXCITATION

Reed - (RICO plasticover, hardness 2)

Length (free part when clamped) L = 34mm

Width w = 13mm

Density � = 500 kGm�3

Young's Modulus Y = 5:6� 109Nm�2

Viscoelastic constant � = 6:0� 10�7 s

Fluid damping coeÆcient 
B = 100 s�1

Arti�cial lip (water-�lled balloon)

Length of the contact segment Llip = 10mm

Position of the centre of the contact segment xlip = 22mm

Vertical position ylip = 5:65mm

Sti�ness per unit length Klip = 6:5� 104Nm�2

Additional 
uid damping 
B;lip = 16000 s�1

Mouthpiece (Bundy)

Lay length (total) 34mm

Lay length (curved part) 25mm

Contact sti�ness per unit length Klay = 1:0� 108Nm�2

Discretisation

Number of sections N = 200

Sample rate fs = 200kHz

Table 10.1: Parameter values used in the simulations.

the position of the balloon-lip in the arti�cial blowing system. The vertical position of the

lip was then adjusted such that the gap between the reed tip and the lay is 0:4mm. These

positions are normally part of the player's embouchure, and may vary from note to note.

The damping that the lip adds to the system was determined by adjusting it until the

simulation exhibited a damping behaviour similar to the behaviour observed in experi-

ments by Worman [167], i.e., a reed damping factor g � 3000 rad/s.

The parameter Klay, that indicates the sti�ness per unit length associated with the

elastic restoring force of the reed/mouthpiece interaction, is diÆcult to determine via mea-

surement. Instead, we have chosen Klay as the highest possible value that does not cause

any numerical instability problems in the simulation. This choice amounts to assuming
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Figure 10.10: The pressure di�erence signal applied to the numerical simulation of the distributed
model (top), and the resulting reed tip displacement (bottom).

that the reed and the mouthpiece are made of strong materials and may be regarded as

incompressible in comparison with the lip.

10.2.5 Initial Results

Using the parameters determined as described in the last section, a number of initial results

were obtained from running the simulation of the distributed reed model simulation (with

no acoustical feedback). Firstly, the simulation was run using a sinusoidal driving pressure

di�erence, and the resulting tip displacement was traced (see Figure 10.10). The reed tip

is clearly \stopped" from exceeding a certain displacement level. This corresponds to the

reed curling up to the mouthpiece lay. Another interesting feature of the displacement

signal in �gure 10.10 is that the displacement signal exhibits small additional oscillations

just before it reaches it maximum. This corresponds to a point where the mass makes a

rather sudden \jump" to a smaller value, which incites a decaying oscillation at the new

resonance frequency of the system. These waveform features have been observed to some

extent in various arti�cial blowing experiments with clarinet reeds [16, 96, 57, 67].

Secondly, the simulation was run in a \quasi-static" manner. That is, a series of

simulations was run, where in each simulation a di�erent (constant) driving force was

applied. The simulation duration was chosen such that all oscillations have decayed at the

end, at which point the position of each reed section (i.e., the reed deformation state) is

measured. Figure 10.11 shows a representative set of deformation states.

The quasi-static simulation allows us to determine the elastic properties of the

reed/mouthpiece system. In general, the reed motion is dominated by the pressure di�er-

ence that drives it, and the driving signal contains frequency components that are mostly

below the resonance frequency of the reed/mouthpiece system [101, 144]. For such a sys-
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Figure 10.11: Reed deformation states, as measured from the quasi-static simulation.
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tem, the inertia properties of the reed may be considered as of secondary importance to

the elastic properties [52]. Hence the elastic properties give us a good �rst approximation

of the behaviour of the reed/mouthpiece system. In the literature, the elasticity of the

reed/mouthpiece system is often referred to in terms of the equivalent sti�ness per unit

area7 (see, e.g., [140, 144, 22]). This quantity indicates how much pressure di�erence is

required to achieve a certain (relative) displacement of the reed tip:

�p = Kae (yL � y0) : (10.32)

In �gure 10.12, �p is plotted against (yL � y0). As may be expected, the elasticity

behaviour of the reed/mouthpiece system is approximately linear for small displacements,

and becomes increasingly non-linear as the reed is pushed towards closure.

10.2.6 Comparison with Previously Developed Models

Numerical simulations of a distributed model of the reed/mouthpiece system have been

developed in two earlier studies [140, 137]. The main di�erences in comparison with the

numerical model presented in the present study are:

� In [140, 137], the viscoelastic friction within the reed is not considered, and the

damping observed in experiments with the reed is taken into account by setting the


uid damping to a certain value such that the simulation exhibits the appropriate

damping at the resonance frequency of the reed/mouthpiece system. Since 
uid

damping is practically frequency-independent, this results in underdamping of the

higher frequencies.

� The numerical formulation in [140, 137] corresponds to using a �-scheme with � =

1=2. As seen in section 10.2.2, this results in signi�cantly larger warping e�ects than

with � = 1=4. Furthermore, the simulations in [140, 137] use �x = 1mm, which

corresponds to a much lower spatial resolution than that is used in the present study

(200 sections, which corresponds to �x = 0:17mm).

� In [140], the sample rate is fs = 400kHz, whereas in [137] a sample rate of fs = 48kHz

is reported. In the present study it was found that with N = 200, a sample rate

fs = 200kHz gives suÆciently accurate results.

� In [140, 137], the e�ective thickness b(x) of the reed was approximated with a linear

function, whereas in the present study a fourth-order polynomial was used. It was not
7In [101], the elastic properties are referred to in terms of the reed compliance, which is the inverse of

the sti�ness per unit area.
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tested here whether the use of a more the more precise fourth-order approximation

results in a signi�cant improved simulation accuracy.

� In [140, 137], it is assumed that the lay is 
at up to a certain point, and that the

remaining part of the lay is well approximated with a parabolic function. For this

reason, it was assumed that it is suÆcient to model only the motion of that part

of the reed that curls up to the curved part of the lay. However, the measurements

on various clarinet mouthpieces carried out in the present study indicate that the

lay starts to curve from a point much closer to the clamping point. Therefore, our

model includes all parts of the reed that are not clamped by the ligature.

� In [140, 137], collisions between the reed and the mouthpiece are simulated by simply

stopping any reed section from moving any further than the position of the mouth-

piece. That is, if a section of the reed collides with the mouthpiece, that section is

held at its position for as long as the reed tends to move into the mouthpiece. In

other words, a \stop" is imposed on that reed section. It can be easily shown that

this method causes immediate accelerations to neighbouring reed sections that are

not in contact with the mouthpiece. Since these immediate accelerations can not be

caused by lip or shear forces8, they must considered as arti�cial (i.e., contact-forces

are applied to reed sections that are not in contact with the mouthpiece). The col-

lision model presented in section 10.2.3 is based on conditional contact-forces, and

by de�nition does not exhibit such arti�cial accelerations.

10.3 An Equivalent Lumped Model

In this section we explore the possibility of modelling the mechanical behaviour of the reed

as a driven harmonic oscillator. The main assumption on which this approach is based

is that the reed/mouthpiece system is well characterised by its �rst mode of vibration,

and driven below the frequency of that mode [17, 144, 22, 81]. From a mechanical point

of view, a harmonic oscillator corresponds to an ideal mass-spring-damper system driven

by a certain force, for which the displacement of the mass is governed by a second-order

di�erential equation (see appendix F). In application to the reed/mouthpiece system, this

model describes only the motion of the reed tip (yL), i.e., it is a lumped model of the reed:

Me
d2yL
dt2

+Re
dyL
dt

+Ke(yL � y0) = Fe; (10.33)

8Shear forces travel through the reed at a �nite speed, and can not travel from one section to another
in zero time.
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where Me, Re, Ke and Fe are the equivalent mass, damping, sti�ness, and driving force,

respectively, and y0 is the equilibrium position of the reed tip. The driving force is de�ned

as the product of the equivalent driving surface and the pressure di�erence across the reed:

Fe = Se ��p: (10.34)

Dividing all terms in (10.33) by Me yields the reduced form of equation (10.1):

d2yL
dt2

+ ge
dyL
dt

+ !2e (yL � y0) =
�p

�e
; (10.35)

where

!e =

r
Ke

Me
; ge =

Re

Me
; �e =

Me

Se
: (10.36)

Furthermore, the reed motion produces a certain volume 
ow. In the equivalent oscillator

model, this 
ow is computed

Ure = Sr � dyL
dt

: (10.37)

Because the reed curls up against the mouthpiece lay as it moves towards closure, the

parametersMe, Re, Ke, Se and Sr continuously change during oscillation. Hence if (10.33)

is to be used for realistic simulation of sound generation in reed woodwinds, the variation

of these parameters over time has to be established.

Gazengel [55] has shown that the variation of the lumped model parameters can be de-

rived from a distributed model of the reed/mouthpiece system. However, the distributed

model used in this study is rather theoretical. Firstly, both the shape of the mouthpiece

as well as the shape of the reed that was used in the calculations were only rough approxi-

mations to their real geometries. Secondly, it is assumed that the role of the lip is no more

than e�ectively clamping the reed at some point along the mouthpiece lay. Such a model

cannot explicitly take into account some of the properties of the lip, such as damping and

sti�ness. Thirdly, the geometry of a real woodwind mouthpiece is such that when the

player's lip presses the reed against the lay, potential energy is stored in the \immobilised

part" of the reed (see �gure 10.13). The e�ective sti�ness of the reed/mouthpiece system

is not independent from this potential energy. In comparison, the numerical simulation

presented in section 10.2 represents a more accurate distributed model. Hence it can be

expected that an improved estimation of the parameters of the equivalent lumped model

can be obtained by applying Gazengel's method to results computed with the numerical

simulation.
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Figure 10.13: The reed mouthpiece system with the reed in rest position. The separation point
de�nes the part of the reed that can freely vibrate. The remaining part of the reed is e�ectively
immobilised, though potential energy is stored there.

10.3.1 Principles of the Parameter Determination

The parameter determination method in [55] is mainly based on the assumption that at

each time instant, the harmonic oscillator has the same potential and kinetic energy as

does the distributed model. This approach is similar to Rayleigh's method for determining

the eigenfrequencies of a beam under 
exure as explained in [116], and has been applied

previously for the determination of the �rst resonance of an organ reed [143] and a clarinet

reed [57]. While the reed was assumed to have the form of a straight bar in [143, 57],

Gazengel [55] also provided results for a wedge-shaped bar. In the case of a numerical

model, the method can easily be applied to the general case of a bar with varying thickness.

Given a displacement y(x; t) and velocity v(x; t) = @y=@t(x; t), the potential and kinetic

energy of a reed modelled as a non-uniform bar are [98]:

Epr =
1

2

Z L

0
Y I(x)

�
@2y

@x2
(x; t)

�2
dx; (10.38a)

Ek =
1

2

Z L

0
�A(x) (v(x; t))2 dx: (10.38b)

However, due to the action of the lip and the mouthpiece, the equilibrium position

of the reed is such that (10.38) does not properly express the potential energy of the

reed/mouthpiece system. For this reason, we follow the suggestion by Avanzini [12] to

de�ne the potential energy of the reed/mouthpiece system such that action of the lip and

mouthpiece are included:

Ep = Epr + Elip + Elay �Ep0; (10.39)
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where Ep0 is de�ned such that the potential energy is zero at yL = y0:

Ep0 = [Epr + Elip + Elay]yL=y0 : (10.40)

The potential energies due to the lip and mouthpiece action are:

Elip =
1

2
Klip

Z L

0
�y2lip(x; t) dx; (10.41a)

Elay =
1

2
Klay

Z L

0
�y2lay(x; t) dx; (10.41b)

where

�ylip(x; t) =

(
y(x; t)� b(x)� ylip(x); if y(x; t) < ylip(x) + b(x)

0; otherwise
: (10.42)

and

�ylay(x; t) =

(
y(x; t)� ylay(x); if y(x; t) > ylay(x)

0; otherwise
: (10.43)

The potential and kinetic energy of the equivalent lumped model are:

Epe =
1

2
Ke (yL � y0) ; (10.44a)

Eke =
1

2
Me v

2
L: (10.44b)

The equivalent sti�ness and mass are computed as the sti�ness and mass for which Ep =

Epe and Ek = Eke:

Ke =
2Ep

(yL � y0)
2 ; (10.45a)

Me =
2Ek

v2L
: (10.45b)

The equivalent driving surface is determined from the static case, where we have:

Ke (yL � y0) = �p Se: (10.46)

It follows that

Se =
Ke

Kae
; (10.47)

where Kae is the equivalent sti�ness per unit area (see (10.32)). As seen in section 10.2.5,

we can \measure"Kae directly from the quasi-static simulation. The volume 
ow produced
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by the reed moving with velocity v(x; t) is:

Ur = w

Z L

0
v(x; t) dx: (10.48)

Combining with (10.37) gives the equivalent 
ow surface, which is the surface for which

Ure = Ur:

Sr =
Ur
vL
: (10.49)

In [55], no method for determination of the equivalent damping is given. Instead, this

parameter is assumed to be constant during oscillation. We will follow this approach,

except for small reed openings (see section 10.3.3).

10.3.2 Dynamic versus Static Deformation

Gazengel's method for parameter determination is based on the assumption that the de-

formation of the reed is the same for the dynamic case as it is for the static case. The main

advantage of this approach is that there is a one-to-one relation between the deformation

state and tip displacement, which means that the equivalent lumped model parameters

can be determined as a unique function of yL. Note that there is a \jump" in the separa-

tion point, which corresponds to a part of the reed closer to the reed tip touching the lay

before the part just next to it (on the instrument side) has fully curled up to the lay (see

�gure 10.15). We used our numerical simulation of a clarinet reed/mouthpiece system to
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Figure 10.14: Separation point versus tip displacement.

verify whether this is a reasonable assumption. This was done measuring the separation

point (i.e., the �rst point of contact between the lay and the reed, as seen from the reed

tip), as a function of tip displacement, using �rst a static and then a dynamic simulation.

We may expect that there is a strong correlation between the separation point and the
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separation
point

lip

Figure 10.15: Case in which the reed does not smoothly curl up to the mouthpiece, which
corresponds to a jump in the separation point.

lumped model parameters, because the separation point de�nes the part of the reed that

can move freely. In the dynamic simulation, the reed was driven by a sinusoidal pressure

di�erence at a frequency fd = 200Hz, while in the static simulation a linear increasing

scale of pressure di�erences was applied. Figure 10.14 compares the resulting separation

point versus tip displacement.

Around this discontinuity, the dynamic simulation exhibits a form of hysteresis. How-

ever, the deviation from the static curve is generally quite small. We found similar results

for frequencies up to 1500Hz, although the hysteresis e�ect does increase somewhat with

frequency. Since the signal that drives the clarinet reed usually has a lowpass character

with a cut-o� of about 1500Hz, it may be concluded that there is generally only a small

di�erence between the dynamic and static deformation of the reed9.

10.3.3 Parameter Determination with the Quasi-Static Simulation

For estimation of the equivalent parameters, a quasi-static simulation is used. The main

reason for using a quasi-static rather than the intuitively more correct dynamic simulation

is that hysteresis e�ects are avoided. The use of the quasi-static case is based on two

assumptions:

� The reed deformation is approximately the same in the quasi-static case as in the

dynamic case. This assumption has been analysed in section 10.3.2.

� The equivalent parameters are independent of frequency. This assumption is likely

to hold if it may be assumed that the higher modes of the reed are strongly damped.

The observations made in the experiments described in section 10.2.4 con�rm this.
9In [65], it is argued that hysteresis in the forces on the reed (although due to a hydrodynamic rather

than a mechanical phenomenon) may explain particular features of reed behaviour. This subject is, how-
ever, considered to be beyond the scope of the present study.
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Figure 10.16: Parameters of the equivalent lumped model of a clarinet reed/mouthpiece system
as a function of reed tip displacement. The straight, vertical dashed line on the left side of each
plot indicates the equilibrium yL = y0, and the straight, vertical dashed line on the right side of
each plot indicates the mouthpiece position at the reed tip yL = ylay(L). The dashed part of each
parameter curve indicates the extrapolation of the data towards a \logical" value, as explained in
the text.
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The method works as follows. First, one period of a sinusoidal driving pressure di�erence

is created in discrete-time form10. The sampled values of this pressure di�erence signal

are then applied in successive steps to the numerical simulation as a constant force, where

in each simulation step the system is run for a suÆciently high number of samples Nqs

such that all oscillations decay before t = NqsT . For each pressure di�erence (�p)m, the

following quantities are traced:

� the reed deformation ymi . From this we can deduce the discrete-time velocities

(Æy=Æt)mi of the reed sections, which are required to compute the kinetic energy

with a numerical version of (10.38) and the volume 
ow with a numerical version of

(10.48). We also deduce the \reed-bend" (Æ2y=Æx2)mi , which is required to compute

the potential energy of the reed with a discrete version of (10.38). Furthermore,

the reed tip displacement (yL)
m at the reed tip is used to compute the equivalent

sti�ness per unit area with (10.32).

� the lip compression �(ylip)
m
i and the mouthpiece contact compression �(ylay)

m
i ,

which are required to compute the lip and mouthpiece potential energy with discrete

versions of equations (10.41).

The sinusoidal driving pressure di�erence varied between �770N/m2 and +9230N/m2,

and the driving frequency was fd = 200Hz. The variation over time of the parametersMe,

Ke, Se and Sr was estimated this way, using the formulae presented in (10.3.1). In some

cases these computations result in a division in which both numerator and denominator are

very close to zero. This can lead to numerical problems that result in inaccuracies in the

parameter determination. This turned out to be especially problematic with calculating

the equivalent sti�ness for small de
ections. Therefore, we compute the sti�ness with a

method that cross-fades between the results obtained by direct division Ep=(yL � y0)2

and the steepness of a linear �t to the data [(yL � y0)
2; Ep] in the region where (yL � y0)

is close to zero. The same method was applied to compute the equivalent sti�ness per

unit area. For the remaining parameters (Me, ge, Se and Sr), numerical problems only

occurred for very small tip velocities. Therefore, no data was obtained directly for very

small openings, but instead we extrapolated the obtained data in a logical manner. That

is, the driving and 
ow surfaces are assumed to go to zero for yL = y0. To avoid division

by zero, Se was set to a very small positive value at closure. Using (10.47), we can then

deduce the equivalent sti�ness for small openings. How the equivalent mass varies near

closure is less obvious. Intuitively, one is led to assume that Me goes towards zero as the

10Note that the sample rate f�s of this signal may be chosen independently from the sample rate fs of
the quasi-static simulation. Increasing f�s results in a higher number of estimation points. It was found
that, with applying a driving frequency fd = 200Hz, using f�s = fs = 200 kHz gives a suÆcient number of
estimation points. The time-index of the driving signal is indicated with m.
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Figure 10.17: Parameters of the reduced equation of the equivalent lumped model, as a function
of tip displacement. fe is the resonance frequency, �e is the mass per unit area and ge is the
damping factor.

reed moves towards full closure. However, it was found that using an in�nitely small mass

leads to instability problems in the �nal lumped model. Therefore we extrapolated the

mass towards a small positive value at yL = y0. Figure 10.16 shows the resulting estimated

parameters as a function of reed tip displacement. The corresponding parameters fe ge

and �e of the reduced equation are plotted versus tip displacement in �gure 10.17. Note

that the damping factor ge was not derived from the distributed model. It was found

empirically that in order for the lumped model to be stable, the damping needs to increase

strongly for small reed openings. The damping was therefore held constant up to a certain

displacement yL = yc, while for larger displacements the damping was set to increase with

displacement according to a cosh function.
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Figure 10.18: Discrete-time approximation of the reed response, using 44.1 kHz sample rate.

10.3.4 Numerical Formulation

For discrete-time simulation of the equivalent lumped oscillator, a numerical formulation

of (10.35) has to be found. To simplify this task, we rewrite (10.35) as:

d2y

dt2
(t) + ge(t)

dy

dt
(t) + !2e(t) y(t) =

�p(t)

�e(t)
; (10.50)

where y(t) = yL(t) � y0 is the relative tip displacement. A numerical formulation of

(10.50) is relatively straightforward in the case of constant parameters. In appendix F,

three di�erent methods for discretisation are compared. In the case of simulating an

oscillating reed, emphasis should be put on accuracy in the lower frequency response,

since the reed is driven mainly below its resonance. From the comparisons in �gure F.2 it

can be seen that the impulse invariance method is therefore the least suitable method. Of

the remaining methods, the bilinear transform (BT) more closely approximates the ideal

reed response than the �nite di�erence method (FDM) (see �gure 10.18). However, the

di�erence equation using the FDM only contains delayed input-terms, which simpli�es the

�nal numerical formulation of a complete simulation of a pipe excited with a single reed

(see section 10.4), and is therefore preferred. Application of the �nite di�erence scheme

in (F.32) yields the di�erence equation for the equivalent harmonic oscillator:

y(n+ 1) = b1(n) ��p(n)� a1(n) � y(n)� a2(n) � y(n� 1): (10.51)
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Figure 10.19: Pressure di�erence signal (top), and the resulting output waveform of reed os-
cillator model (bottom), using equivalent parameters (solid) and constant parameters (dashed).
The vertical dotted lines in the bottom �gure indicate the mouthpiece tip position (upper) and
equilibrium position (lower). The driving frequency is 500Hz.

with the coeÆcients:

b1(n) =
T 2

�(n)
; (10.52a)

a1(n) = T 2 !20(n) + T ge(n)� 2; (10.52b)

a2(n) = 1� T ge(n): (10.52c)

Note that in order to compute y at time t = (n + 1)T , the coeÆcients as known at time

t = nT are used. This allows us to simply update the coeÆcients at each sample with the

use of lookup-tables in which the values of the coeÆcients are stored as a function of y.

As discussed in section 10.1.3, a simpler reed model employs a harmonic oscillator with

constant parameters, while reed beating is simulated by imposing a stop when the reed

aperture becomes negative. Such a model behaves as a linear oscillator as long as the

reed does not fully close. In contrast, the equivalent lumped model starts to behave in a

non-linear way at much smaller reed displacements. This is demonstrated in �gure 10.19,

in which the simple model is compared to the equivalent lumped model. The coeÆcients

of the simple model were set at the values of the equivalent lumped model at equilibrium.

10.3.5 Comparison with the Distributed model

In order to test if the behaviour of the lumped model approximates that of the distributed

model, various comparisons were made. Firstly, the pressure di�erence as depicted in

�gure 10.19 was also applied to the distributed model. The resulting tip motion and

reed-induced volume 
ow are compared with the those obtained with the lumped model
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Figure 10.20: Reed tip motion (top) and reed-induced 
ow (bottom) of the distributed model
(solid) and the lumped model (dashed).
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in �gure 10.20.

Apparently, the lumped model approximates the distributed model, though the wave-

forms di�er slightly. These di�erences can be explained in terms of di�erent damping

behaviour, i.e., the \extra oscillations" that occur at the jump in separation point tend to

be somewhat less damped in the lumped model. The fact that the damping behaviour de-

viates somewhat is not surprising, given that the damping as a function of yL was imposed

rather than derived.

Secondly, a di�erent driving signal, that more resembles the kind of pressure di�er-

ence signal in a clarinet under playing conditions, was applied. This driving signal was

generated by lowpass �ltering a square wave, and the amplitude was chosen such that the

reed exhibits beating behaviour. Figure 10.21 shows the resulting reed motion and volume


ow. Apparently the equivalent lumped model also approximates the distributed model

quite well in the case of a signal that contains several frequency components, such as the

clarinet-like signal used in this example. Hence the term \equivalent" appears largely

justi�ed.

10.4 Pipe Excitation

In this section, we apply the non-linear lumped oscillator model in a simulation of a pipe

excited with a clarinet reed. The main objective is to investigate the e�ect of the extra

non-linearity on the behaviour of the reed/pipe system.

10.4.1 Modelling the Pipe

A 40cm long pipe with a radius of 6:5mm, was modelled in the discrete-time domain using

the techniques described in chapter 4. Forward and backward-propagation through the

pipe is modelled with a delay-line in cascade with two �lters, and the open-end re
ectance

is approximated with a digital �lter (see �gure 10.22). The loss-�lter and the open-end

re
ectance �lter are �fth-order IIR �lters, and model the boundary and radiation losses,

respectively. The fractional delay �lter (FD) is a third-order FIR Lagrange interpolation

�lter.

10.4.2 Numerical Formulation of the Coupled System

The pipe model computes the response p�(t) to an in-going pressure wave p+(t). At time

t, these waves are related to the pressure and the volume 
ow by:

p(t) = p+(t) + p�(t); (10.53a)

Z0 u(t) = p+(t)� p�(t); (10.53b)
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Figure 10.22: Discrete-time model of the cylindrical pipe.

where Z0 is the characteristic impedance of the pipe. These equations couple the pipe

system to the reed excitation system. The complete system can be solved at discrete-time

instants t = (nT ) as follows. Given a pressure di�erence �p(n), the reed displacement

y(n+ 1) is computed with (10.51). Next, the reed-induced 
ow is approximated with:

ur(n+ 1) = Sr

�
y(n+ 1)� y(n)

T

�
: (10.54)

By combining (10.7), (10.53) and (10.2), we obtain a single non-linear equation for the


ow uf (n+ 1):

D1 � Sgn � u2f(n+ 1) +D2 � uf (n+ 1) +D3 = 0; (10.55)

where at each time instant, D1, D2 and D3 are temporarily considered as constants11:

D1 =
�

2 [wh(n+ 1)]2
; (10.56a)

D1 = Z0; (10.56b)

D3 = 2p�(n+ 1)� pm(n+ 1) + Z0 ur(n + 1); (10.56c)

where h(n+ 1) = max(H � y(n+ 1); 0) is the reed aperture. The value of the returning

wave p�(n + 1) is known because it is simply the next value stored in the delay-line.

Equation (10.55) is solved using the Newton-Rhapson method. The function for which

the root is solved is monotonic under all circumstances, thus there always is a single,

unique solution to (10.55). Using the last solution (i.e., uf(n)) as the initial value for the

iteration, it was found that nine iterations is typically suÆcient for an accurate solution

of the non-linear equation. The new volume 
ow u(n+1) = uf (n+1)+ur(n+1) into the

instrument is now known, and is used to calculate the next in-going wave using (10.53):

p+(n+ 1) = p�(n+ 1) + Z0 u(n+ 1): (10.57)

11For the purpose of solving (10.55), we may temporarily consider D1, D2 and D3 as constants because
within the numerical formulation, the variables pm(n + 1), ur(n + 1) and h(n + 1) do not depend on
uf (n+ 1).
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Figure 10.23: Mouthpiece pressure calculated with the reed/pipe simulation. The mouth pressure
was constant (pm = 1100 Nm�2).

Finally, the new mouthpiece pressure and pressure di�erence are computed:

p(n+ 1) = p+(n+ 1) + p�(n+ 1); (10.58a)

�p(n+ 1) = p0(n+ 1)� p(n+ 1): (10.58b)

Equations (10.54), (10.55), (10.56), (10.57) and (10.58), in combination with (10.51)

and (10.52) form the set of equations from which each variable is solved sample by sample.

Note that the system is computable without having added a �ctitious delay to the system.

As pointed out by Avanzini and Rochesso [13], such a �ctitious delay is sometime used

in order to avoid a delay-free loop in the system (for example in [124, 54]). The key to

avoiding a �ctitious delay in this case is the use of a reed oscillator di�erence equation

(equation (10.51)) in which only delayed input-terms are used. This is not the case for all

methods for discretisation of the harmonic oscillator (see appendix F). It is for this reason

that the �nite di�erence method is preferred above the bilinear transform. As seen in

�gure 10.18, this leads to a small discretisation error, especially concerning the resonance

frequency of the digital reed oscillator. Since sustained oscillations in the reed/pipe system

are at frequencies below the reed resonance, it can be argued that this discretisation error

is of minor importance to the behaviour of the system. This was tested by comparing the

pressure waveforms generated with two di�erent sample rates. In general, the di�erence

between a digital model and its continuous-time counterpart converges towards zero with

increasing sample rate. It was found that using a sample rate higher than fs = 500kHz

hardly leads to any di�erences in the waveform. Therefore, the waveform produced using

fs = 500kHz was taken as the \true" result. Figure 10.23 compares this waveform with

the waveform produced with using fs = 50kHz.

A more general solution for avoiding �ctitious delays is achieved with the use of the
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Figure 10.24: Volume 
ow versus pressure di�erence, as calculated with the lumped model, using
constant parameters (dashed) and equivalent parameters (solid). The third curve (dash-dot) is
from Worman [167] based on Backus' experimental results.

so-called \K-method" [31], which was applied to a clarinet simulation in [13, 14]. This

method is independent of the choice of discretisation method.

10.4.3 System Properties

The digital simulation of the reed/pipe system using the non-linear lumped oscillator

model allows us to test various of its properties. Here we are particularly interested in

two speci�c features. Firstly, we analyse the 
ow versus pressure di�erence behaviour.

This gives us some initial clues about the basic properties such as threshold pressure [22].

Secondly, we compute the spectral evolution of the mouthpiece pressure waveform for

an increasing mouth pressure. This gives us insight in the in
uence of the mechanical

non-linearity of the reed/mouthpiece system on the timbre of the sound produced by the

reed/pipe system.

Flow versus Pressure Di�erence

The 
ow versus pressure di�erence curve is usually obtained by measuring or calculating

the amount of 
ow through the reed channel under static conditions (i.e., there is no reed

oscillation), for a range of pressure di�erences. The relation between pressure di�erence

and 
ow obtained this way also holds for quasi-static conditions (i.e., when the reed is

assumed to move exactly in phase with the pressure di�erence) [65]. Figure 10.24 compares

three di�erent 
ow vs. pressure di�erence curves. The shape of the curve depends heavily

on the sti�ness of the reed employed [140]. This explains why the computed curves are

below Backus' experimental curve: Backus used a normal (non-humid) cane reed, which

is much sti�er than the plastic-coated reed that was simulated in the lumped model.
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It could therefore be argued that the computed curves more realistically indicate the

system behaviour under playing conditions. However, the shape of the curves also strongly

depends on the interaction with the lip and the mouthpiece. Hence there is by no means

a \de�nitive" curve, but rather a set of curves that depend on the player's embouchure as

well as on the mouthpiece lay shape.

Perhaps more interesting is to compare the \constant-parameter" curve (obtained using

the parameters set to the values of the equivalent lumped model at equilibrium) with the

\equivalent-parameter" curve. The curve maxima are very close, thus it can be expected

that the values of the threshold pressure di�erences (which lie closely near the maxima,

on the right side [140]) are very similar. On the other hand, the pressure di�erence at

which the reed fully closes (at uf = 0) is much larger in the case of using equivalent

parameters. In other words, with using the equivalent parameters, there is a much wider

mouth pressure range for which sustained oscillations are produced with the reed/pipe

model.

Spectral Evolution

The inclusion of the e�ects of reed curling in the reed/pipe model has a strong in
uence

on the spectral evolution of the mouthpiece pressure. Figure 10.25 depicts the spectogram

of the mouthpiece pressure computed using equivalent parameters (i.e. displacement-

dependent parameters). In this example, the mouth pressure was linearly increased from

1100 to 2000 Nm�2, after a short period of constant mouth pressure. There is clearly a

gradual rise of higher harmonics during the period of increasing mouth pressure, i.e., the

spectral content is controlled by the mouth pressure. Because the spectrum of the sound

radiated from the instrument is related to the mouthpiece pressure via a simple transfer

function [26], this means that the player is able to change the timbre by blowing softer

(producing a \mellow" tone) or harder (producing a \bright" tone). We note that apart

from the timbre, also the pitch and the overall amplitude of the sound increase with mouth

pressure.

If constant parameters are used (i.e. the parameters are held constant at the values

they have at equilibrium), the spectral evolution is rather di�erent (see �gure 10.26)12.

The most striking characteristic of the spectogram displayed in �gure 10.26 is that it

does not show much change after the reed has started beating (at about t = 0:8s). That

is, before this point in time, the number of harmonics that are involved in the sound

generation process is rising, whereas after this point, the harmonic content more or less

stays the same. On the other hand, the spectogram in �gure 10.25 shows an increasing
12In the generation of the spectogram �gures, the colours are automatically normalised in order to show

the maximum contrast. Thus a particular level of grey in �gure 10.25 does not necessarily indicate the
same amplitude as the same level of grey in �gure 10.26.
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Figure 10.25: Spectogram of the mouthpiece pressure, as computed with the reed/pipe system,
using equivalent parameters. The blowing pressure was linearly increased from 1100Nm�2 at
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using constant parameters. The blowing pressure was varied in the same way as for the example
in �gure 10.25. The sample rate is 176:4kHz.
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number of harmonics over the total time period of increasing mouth pressure. Hence the

two cases (using constant or using equivalent parameters) result in signi�cantly di�erent

spectral evolutions of the mouth pressure.

Using the method of the radiation �lter, which was expained in section 9.2.3, we

can obtain an approximate radiation pressure signal from the simulation. The four time-

domain signals that were computed with the reed-excited pipe simulation (the mouthpiece

pressure signals obtained with constant as well as with equivalent parameters, and the

radiation pressure signals obtained with constant as well as with equivalent) can also be

judged by ear13.

10.5 Conclusions and Future Work

In this chapter we have discussed single reed excitation, with emphasis on the mechanical

behaviour of the reed/mouthpiece system. We have developed a distributed model of the

reed/mouthpiece system that is formulated numerically using �nite di�erence methods,

and for which the simulation parameters can be determined via experiments. Various

improvements were made in comparison with previously developed models, particularly

with respect to discretisation issues and methods for modelling the mouthpiece and lip

interaction. Simple tests with the simulation have shown that it behaves similarly to

what has been (qualitatively) observed in arti�cial blowing experiments. It is important

to note that the properties of the system strongly depend on various parameters, most

notably those related to mouthpiece design, reed type and embouchure. Hence the results

presented in this chapter by no means form a representative set for all possible cases.

Investigating the model for a more wide variety of parameter sets could be the subject

of future research. Moreover, further experiments are still required in order to provide a

more thorough veri�cation of how well the model describes the behaviour of a real clarinet

reed/mouthpiece system. For example, it would be interesting to investigate whether the

\separation-point jumps", as discussed in section 10.3.2 can be observed in experiments.

We envisage that such experiments will be carried out using a setup in which the reed

(clamped to the mouthpiece) is driven by a horn driver, similar to the experiments with

the arti�cial lip setup employed in the brass instrument research by Cullen et al. [40, 41].

In section 10.3, we have seen that an equivalent lumped oscillator model of the

reed/mouthpiece system is possible, for which the parameters are determined using the

distributed model. Although this parameter determination is based on a quasi-static simu-

lation, the resulting equivalent lumped model closely approximates the dynamic behaviour

of the distributed model.

Furthermore, we have shown that an accurate discrete-time simulation of a pipe excited

13Sound examples (ex9), (ex10), (ex11) and (ex12) in appendix K.
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by a clarinet reed is possible, without the use of a �ctitious delay. Various properties of

this system were discussed, and comparisons were made between using a linear (using

constant parameters) and a non-linear (using equivalent parameters) lumped model of the

reed. The nature of the di�erences observed are such that Thomson's suggestion that

these di�erences \can be thought of as perturbations" [144] is questionable.

There are interesting implications with respect to musical sound synthesis. It was

found that for the non-linear reed model, the mouth pressure range in which sustained

oscillations are possible is much wider. Varying the mouth pressure within this range

corresponds to changing the amplitude of the higher harmonics in the mouthpiece pressure

signal and the radiated sound. This is a feature that is typically aimed for in the context

of sound synthesis via physical modelling: it allows for a simple and intuitive, though

\natural" control of the sound timbre.

Future work other than that already mentioned is envisaged in two directions. Firstly,

it is theoretically possible that also the damping parameter of the lumped model is derived

using the distributed model. Our �rst attempts in this direction indicate that this should

be done using a dynamic rather than a quasi-static simulation. Secondly, the distributed

model can be extended towards modelling the 
ow though the reed. Combined with the

insights provided by recent research [65, 57, 67, 64, 82] this could lead to an improved

understanding of the non-linear oscillations in single reed woodwind instruments. Further-

more, this would allow us to derive all parameters (including those related to the 
ow) of

the elementary valve model presented in section 10.1.2 from simulations with a distributed

model.
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Chapter 11

General Conclusions

Methods for time-domain simulation of brass and reed woodwind instruments have been

studied in this work. Acoustic theories were reviewed and used as a basis for the deriva-

tion of discrete-time models of the di�erents parts of an instrument. Simpli�cations and

discretisations have been carried out taking into account a number of criteria that are

relevant with regard to application in a musical sound synthesis environment.

Throughout the thesis, newly developed methods are presented next to reviews of

previously developed methods and theories. The reader might not always be able to

distinguish between new and previous work. In order to give an absolutely clear account

on this matter, the exact contributions by the author are summarised below.

11.1 Summary of Contributions

In chapter 2, viscothermal losses in a conical bore were formulated by means of the in-

tegrand method. This method was shown to be more accurate than the conventional

\means-radius method". Further contributions include a piecewise model comparison,

which showed that 
aring bores can be modelled accurately using a piecewise conical

series approximation as long as no large wavefront cross-section mismatch arises at the

boundary.

In chapter 3, we have formulated the wave digital modelling approach that combines

digital waveguide modelling techniques with wave digital �lter techniques. This approach

o�ers distinct advantages over previously developed techniques. In particular, the ap-

proach allows for eÆcient implementation of lumped acoustic elements, which is a subject

that was not adequately covered previously in the context travelling-wave based simulation

of wind instruments. In addition, we have formulated a new method for modelling the bore

response via convolution with the re
ection function. This \full re
ection method" does

not rely on any assumptions about the dimensions of the bore, whereas the conventional

245
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re
ection function method assumes a non-tapered bore entry.

In chapter 4, a one-�lter formulation of a junction of two conical bore sections was pre-

sented. This formulation is more eÆcient than those given in previous work. A comparison

between the various available methods for discretisation of the junction �lter showed that

the bilinear transform and the continuous-time interpolation method result in extremely

similar structures. Furthermore, the chapter includes an investigation into the e�ects of

modelling conical bore systems using a lossless formulation of the propagation constant

in the junctions while using a lossy version in the formulation of the propagation in each

bore section. It was found that this simpli�cation (1) diminishes the height of the low-

frequency input impedance peaks, (2) causes the impulse response to be divergent, and (3)

a�ects the e�ective length of the bore at low frequencies. The most important part of this

chapter is the investigation into the conditions under which a travelling-wave based digital

simulation of a conical bore system remains stable. A series of simulations indicate that

stability is maintained only in cases where viscothermal losses are excluded. Furthermore,

it was found that under certain conditions, the simulation can be run for a considerable

amount of time without exhibiting any signi�cant unwanted signal growth. Because most

musical wind instrument bore con�gurations are such that these conditions are ful�lled,

this feature allows for the computation of the (truncated) system impulse response. In this

part of the work, aim (4) outlined in section 1.3 is ful�lled only in part; future research in

this area seems warranted.

In chapter 5, a lumped element model of a partially open tonehole was formulated. This

model allows dynamic control of the tonehole state, and closely approximates established

tonehole theory at low frequencies. Discretisation was carried out by means of wave

digital modelling techniques. A six-hole 
ute application demonstrated that the errors

due to simpli�cations and discretisation are extremely small at low frequencies. Further

contributions include the formulation of an eÆcient method for discrete-time modelling of

the sound radiated from a tonehole. The modelling approach taken here completely ful�ls

aim (1) outlined in section 1.3.

In chapter 6, the simulation of the wave scattering at a junction of two conical bore

sections by means of a junction model that is derived via WDF tecniques was presented.

This model is mathematically equivalent to the junction model presented in section 4.3.2,

but is more eÆcient. More importantly, it can be adapted for modelling a conical section in

series with a lumped acoustic element; this enables the derivation of realisable structures

for discrete-time modelling of conical bore woodwinds. The last part of the chapter consists

of a detailed comparison between the wave digital modelling approach and the multi

convolution approach. This comparison revealed that, with respect to modelling the open-

end re
ectance and the inclusion of viscothermal losses, a better balance between accuracy

and eÆciency can be obtained with the wave digital modelling approach.
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In chapter 7, we combined pulse re
ectometry measurements with piecewise-modelling

based bore reconstruction techniques for the experimental determination of a bell re-


ectance. Furthermore, minimum-phase reconstruction techniques were used for the cal-

culation of the bell transmittance, which allowed for an e�ective and numerically robust

design of an IIR �lter approximation. The main body of this chapter describes the appli-

cation and design of one-pole TIIR �lter elements in a digital approximation of a brass

bell re
ectance. It was demonstrated that this approach results in an extremely eÆcient

approximation of the growing portion of the bell re
ectance, while the decaying tail of the

re
ection function may be modelled with a lower-order IIR �lter. In cases where accuracy

is a high priority, it is advisable to model the growing portion of the re
ection function

with an FIR �lter. This part of the work ful�ls aim (3) outlined in in section 1.3.

In chapter 8, pulse re
ectometry and input impedance measurement techniques were

used in experimental determination of the acoustical function of the mouthpiece. These

measurements were used for validation of theoretical models of a trumpet and a clar-

inet mouthpiece. The trumpet mouthpiece was simulated in discrete-time by means of a

wave digital volume (that represents the mouthpiece cup) and a conical bore model (that

represents the backbore). This model, which is also directly applicable to simulation of

various other brass mouthpieces, exhibits the approximately correct acoustical properties.

The clarinet mouthpiece was simulated by means of a model consisting of a conical and a

cylindrical bore section, discretised with wave digital modelling techniques. It was shown

that this model accurately simulates the acoustical function of the clarinet mouthpiece at

low frequencies. Aim (2) in section 1.3 is ful�lled in this chapter.

The elements described in the previous chapters were combined in chapter 9 to for-

mulate simulations of the complete air columns of a trumpet and a clarinet. The simu-

lation parameters were determined by acoustical and geometrical measurements on real

instruments. It was demonstrated that both models closely approximated the established

acoustic theories at low frequencies. In addition, we presented methods that we argue will

give perceptually representative radiation pressure signals.

In chapter 10, we have discussed the single reed excitation mechanism. A distributed

model of the clarinet reed is formulated using the �nite di�erence approach. Because of

various improvements with respect to discretisation, parameter determination and collision

modelling, this model captures the interaction of the reed with the mouthpiece and the lip

in a much more precise way than previous models. The distributed model is then used for

the derivation of an equivalent lumped oscillator model, in which the parameters of this

model are formulated as a function of the reed tip de
ection. It was demonstrated that the

lumped model closely approximates the behaviour of the distributed model. The properties

of a simulation of a pipe driven with the lumped oscillator model were investigated. One

of the main conclusions of the work on this subject is that using a lumped oscillator
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model with de
ection-dependent parameters results in a much smoother dependency of

the mouthpiece spectrum on the blowing pressure amplitude than if constant parameters

are used. The modelling techniques described in this chapter ful�l aim (5) in section 1.3.

11.2 What has not been Modelled

It is important to note that this thesis does not cover all aspects of sound production

in brass and reed woodwind instruments. While the techniques presented here provide

a suitable basis for modelling brass and reed woodwind instruments, other aspects have

been left out for various di�erent reasons.

For full simulation of a brass instrument, a model of excitation by the player's lips is

required. As explained in section 1.2, Msallam et al. [100] and Vergez et al. [161] have

recently developed lip models which excel in capturing the properties of lip excitation that

are most relevant in application to musical sound synthesis. Such a model can for example

be used in combination with the trumpet bore model presented in section 9.1 in order to

simulate the generation of trumpet tones.

Although a reed excitation model was presented in chapter 10, we have not yet coupled

it to a full woodwind bore model. This step would be necessary for a deeper and more

speci�c analysis of the simulation techniques developed in this work. For example, it would

be interesting to compare the transient behaviour of a full clarinet simulation to that of a

real clarinet. Furthermore, such a full simulation is required for the generation of musical

output signals.

Aero-acoustic features have not been considered in this work, but cannot be neglected

in the context of realistic simulation of wind instrument tones. With respect to brass

instruments, this involves modelling the e�ects of non-linear wave propagation that occurs

at high dynamic playing levels. Methods for including such e�ects in a travelling-wave

based simulation have been published recently [100, 160], and can be directly combined

with the techniques presented in the present study.

A realistic simulation of a reed woodwind includes the e�ects of turbulent 
ow in

the mouthpiece. Such turbulent e�ects result in noise components in the sound of the

instrument and also trigger bifurcations in the oscillation [64].

Other aero-acoustical aspects include the e�ects of vortex shedding and non-linearities

at woodwind toneholes. Since various studies indicate that most wind instruments are

designed to minimise such e�ects (see for example, [74]), it is questionable whether it is

essential to include them in a sound synthesis model.

What should also be considered is the in
uence of the player's windway. Studies by

Benade [23] and Hoekje [66] have indicated that the player can cause signi�cant changes

in the sound production mechanism by altering the shape of the oral cavity. As shown in
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a trumpet simulation by Dietz [45], the player's windway can be modelled with methods

similar to those employed for modelling the instrument air column.

Finally, we remark that any simulation requires a controller interface. For generation

of steady-state tones, it is usually suÆcient to simply update the parameters o�-line,

but in real-time applications the parameters are usually updated in a quasi-continuous

fashion, which requires a much more sophisticated and extensive form of interfacing. Such

an application o�ers the type of possibilities for exploration of the sonoric features of the

model that are typically desirable from a musical point of view.

11.3 Suggestions for Future Work

Numerous suggestions for future work have already been made in sections 5.4, 7.5, 8.3, 9.3

and 10.5. In this section we elaborate on the modelling aspects and improvements that

we consider as most urgently needed.

Tonehole Modelling

As explained in section 5.4, the wave digital tonehole model could possibly be improved by

(1) explicitly modelling the negative inertances, and (2) the inclusion of a resistive element

in its shunt impedance. The latter of these is vital from the point of view of modelling

a register hole, because its acoustical function is partly to provide damping at the lowest

resonance frequency [22].

Although the inclusion of a resistive element might look straightforward at �rst sight,

there is in fact a serious complication. As can be seen from equation (5.2), the resistance

of a side branch is in fact to a �rst approximation proportional to the square of the

frequency. A straightforward approach would be to derive a wave digital tonehole from

this impedance expression. Unfortunately, the re
ection function associated with this side

branch impedance formulation is an exponentially growing function of time. Hence the

side branch impedance expression would �rst have to be adapted such that it becomes

suitable for application in the time-domain.

Radiation Pressure

As explained in section 9.3, the high-frequency inaccuracies of the radiation pressure

obtained from a wave digital model can possibly be compensated for by a single �lter.

Such a compensation �lter would have to be designed to approximate the transfer function

between the calculated radiation pressure and the actual radiation pressure. The actual

radiation pressure can be either measured or predicted by means of a precise and complex

model that takes into account the in
uences of the higher modes and the directivity
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e�ects. Note that in principle such a transfer function would have to be determined for

each listening point, although in practice it is probably suÆcient to use a �nite set of

grid-points and interpolate between the corresponding transfer functions.

Aero-Acoustical Aspects in Reed Woodwinds

As explained by Hirschberg et al. [64], realistic simulation of a reed-driven instrument

requires taking into account various aero-acoustical aspects of the volume 
ow through

the reed channel. In particular, the turbulent e�ects associated with the free jet that

is formed in the reed channel are important since they cause signi�cant dissipation and

supply noise components to the radiated sound of the instrument. Moreover, due to the

unstable nature of the free jet it is very diÆcult to predict how the 
ow through the

channel relates to the mouthpiece pressure, the mouth pressure, and the reed opening.

Dynamic measurements have been carried out by Gilbert [57], but this did not result in

reliable data for small reed openings. As explained by Hirschberg et al. this lack of data

precludes the formulation of a realistic model, since the reed closure is essential with regard

to the generation of higher harmonics in the radiated spectrum. An interesting direction

for future research would therefore be to obtain such data using (1) improved dynamic

measurement techniques or (2) simulation with a highly precise numerical 
uid dynamical

simulation. With respect to the second option, a systematic approach would be to couple

such a 
uid dynamical model with a distributed model of the reed/mouthpiece system

such as the one presented in section 10.2.

Stability of Conical Bore Systems

The discrete-time models presented in the present study can be used for the simulation

of musical bores without inclusion of viscothermal losses in any of the conical sections. It

was demonstrated in section 9.2 that the conical sections in the main bore of a clarinet

may be replaced with cylindrical, while excluding loss-�lters from the remaining conical

sections in the model, without introducing any signi�cant errors. However, it remains to

be seen whether such an approach would lead to accurate simulation of wind instruments

that have an essentially conical main bore, such as the saxophone or the oboe. A more

satisfactory solution would be to �rst develop new methods that enable stable simulation

of conical bore systems with inclusion of propagation losses. The results presented in

section 4.4 indicate that an essential requirement for a conical bore system to be stable is

that the junctions are modelled using the same formulation of the propagation constant as

is used in the modelling of the propagation in tubular sections. Hence a possible appropiate

direction for future research on this subject is to develop methods for simulation of wave

scattering using a junction model that is formulated using a lossy propagation constant.



Appendix A

Thermodynamic Constants

Throughout the thesis, unless mentioned di�erently, the gas thermodynamic constants

that are used in the computations are taken from the consistent set of gas parameters for

air at standard pressure, as used by Benade [21] and Keefe [75] (see table A.1). This set

is valid for temperatures in the range 290o�310oK. Here � is the air density, c is the wave
velocity, � is the viscosity coeÆcient, � is the square root of the Prandtl number, and 


is the ratio of speci�c heats. See [21, 75, 35] for further explanation of these constants.

The truncated expansion formulae for the transmission-line parameters of a cylindrical

duct with taking into account viscothermal losses, as formulated by Keefe [75] are given

� = 1:1769 � (1� 0:00335�T )Kg m�3

� = 1:846 � 10�5(1 + 0:0025�T )Kg s�1 m�1


 = 1:4017(1� 0:00002�T )

� = 0:8410(1� 0:00002�T )

c = 3:4723 � 102(1� 0:00166�T )m s�1

Table A.1: Thermodynamic constants. All the values are evaluated at T0 = 26:85oC (300oK),
and are accurate within �10oC of that temperature. The temperature di�erence relative to T0 is
�T . After Keefe [75].
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in equations (2.57). The coeÆcients in these expansions are:

d1 =
1p
2
[1�  ] ; (A.1a)

d2 =

�
1�  +

 

2�
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3 2

2

�
; (A.1b)
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�
; (A.1c)

and

e1 =
1p
2
[1 +  ] ; (A.2a)
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�
; (A.2b)

e3 =
1p
2

�
7

8
+  �  

2�
�  

8�2
�  2

2
+
 2

2�
+
 3

2

�
; (A.2c)
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: (A.3)



Appendix B

Coordinate Systems

In the present study, references are made to di�erent coordinate systems in which to

calculate the motion of waves in air. This appendix forms a brief description of the

relevant coordinate systems. A more detailed explanation can be found in [84, 98].

B.1 Cartesian Coordinates

The Laplacian operator for Cartesian coordinates (x; y; z) is:

r2 =
@2

@x2
+

@2

@y2
+

@2

@z2
: (B.1)

B.2 Cylindrical Coordinates

Figure B.2 depicts a cylindrical bore and its associated cylindrical coordinates. The polar

cylindrical coordinates (a; �; x) are related to the Cartesian coordinates by:

x = x; (B.2a)

y = a sin(�); (B.2b)

z = a cos(�): (B.2c)

x

z

y

Figure B.1: The Cartesian coordinate system.
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Figure B.2: A cylindrical bore and its associated cylindrical coordinates.
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Figure B.3: A conical bore and its associated spherical coordinates.
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Figure B.4: Ratio of spherical and planar wavefront areas as a function of angle of conicity.

The Laplacian operator for cylindrical coordinates is [98]:

r2 =
1

a

@

@a

�
a
@

@a

�
+

1

a2
@2

@�2
+

@2

@x2
: (B.3)

B.3 Spherical Coordinates

Figure B.3 depicts a conical tube and its associated spherical coordinates. The spherical

coordinates (r; �; #) are related to the Cartesian coordinates by:

x = r cos(#); (B.4a)

y = r sin(#) cos(�); (B.4b)

z = a sin(#) sin(�): (B.4c)

The Laplacian operator for spherical coordinates is [98]:

r2 =
1

r2
@

@r

�
r2

@

@r

�
+

1

r2 sin(#)

@

@#

�
sin#

@

@#

�
+

1

r2 sin2(#)

@2

@�2
: (B.5)

The surface area of a spherical wavefront in a cone, located a distance r from the cone

apex, is [25, 119];

S�(r) = 2 � r2 (1� cos(�))
= 2 �a2

�
1� cos(�)
sin2�

�
; (B.6)

where � is the angle of conicity. Figure B.4 shows the ratio S�=S as function of �, where

S = �a2.
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Appendix C

The E�ective Length of an

Acoustic System

The bell and mouthpiece of a brass instrument are frequency-dispersive devices [90]. The

e�ect of dispersion in tubes is classically expressed in terms of e�ective length, which is

de�ned by Long [90] as:

\the physical length that would be required to account for the transit time if the

wave velocity were assumed standard velocity"

This length was determined at resonance frequencies, following a procedure to �nd the

closed-end cylinder that resonates at exactly the same frequency at the corresponding

harmonic, assuming plane wavefronts and lossless wave propagation. With this procedure,

the e�ective length is only de�ned at maxima of the input impedance.

Pyle [110] generalised the concept of e�ective length to all frequencies by de�ning it in

terms of the re
ectance rather than input impedance. Losses due to viscothermal damping

and open-end radiation are not taken into account by Pyle, which ensures that the e�ective

length is real-valued.

More recently, the concept of e�ective length was further generalised by Ayers [15],

who de�ned two versions of \complex e�ective length" as the complex-valued length of

the cylinder (either with open or closed end) having the same re
ectance as the object of

which we are de�ning the e�ective length. The \closed-end" e�ective length of a certain

acoustical object (e.g., a horn or a mouthpiece) is found by equating the object re
ectance

R(!) to the re
ectance of a closed-end cylinder:

R(!) = e�2�Lc ; (C.1)
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where � is the propagation constant. The closed-end e�ective length thus is:

Lc(!) = � 1

2�
ln [R(!)] : (C.2)

In the same way, but starting from R(!) = �e�2�Lc , we can derive the \open-end e�ective

length":

Lo(!) = � 1

2�
ln [�R(!)] : (C.3)

These e�ective lengths are complex-valued, and therefore we can not directly compare

them with the real physical length of the object. Ayers suggests to plot the real part of

these expressions against frequency in order to gain a more intuitive understanding.

We can further simplify the concept if we ignore the e�ects of viscothermal damping,

thus setting � = j!=c. Let �(!) be the phase of R(!), then we �nd:

Lc(!) =
c

2!
[j ln jR(!)j � �(!)] ; (C.4a)

Lo(!) =
c

2!
[j ln jR(!)j+ � � �(!)] : (C.4b)

The real part of the closed-end formula corresponds to the e�ective length as de�ned by

Pyle. The closed-end formula is more intuitive when the object in fact indeed has a closed

end. For example, this is the case for computing the e�ective length of a mouthpiece (that

is closed at its end under playing conditions). For open-ended horns or bells, the open-end

formulation is more practical. Finally, it can be seen easily that the real part of the open-

and closed-end formulae are closely related to the phase delay of the object re
ectance:

<efLc(!)g =
� c
2

� ��(!)
!

=
c

2
�p(!); (C.5a)

<efLo(!)g =
� c
2

� � � �(!)
!

=
c

2

h�
!
+ �p(!)

i
: (C.5b)

Throughout the thesis, equations (C.5) are used for calculation of the open-end and closed-

end e�ective length.
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Two-Port Representations of

Acoustical Systems

This appendix describes the basic 2 � 2 matrix types that are used in the present study

to represent acoustic systems as two-port systems. The general graphical representation

of a two-port system is shown in �gure D.1. Any linear acoustic system can be mathe-

matically formulated in this way. We note that the travelling-wave decomposition used

here corresponds to assuming plane waves. However, the resulting wave variables do not

necessarily correspond to plane waves in a physical sense. For example, pressure waves in

conical bores are spherical, but the cone itself may still be mathematically described with

a cascade of two-port matrices which are derived using decomposition of the acoustical

variables into decomposition into wave variables that are de�ned in the same way as plane

waves (see section 2.3.4). In the frequency-domain, the relation between the variables

on one side of the system can be expressed through di�erent type of matrices, which are

discussed below.

acoustic
system
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Figure D.1: Generalised representation of a plane wave two-port acoustic system.
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D.1 Matrix Representations

D.1.1 Transmission-Line Matrix

The transmission-line matrix relates the pressure and volume velocity (P1; U1) on the left

of the side of the system to the pressure and volume velocity (P2; U2) on the right side of

the system: "
P1

U1

#
=

"
A B

C D

# "
P2

U2

#
; (D.1)

where A;B;C;D are complex-valued, and frequency-dependent.

D.1.2 Waveguide Matrix

The waveguide matrix relates the pressure waves (P+
1 ; P

�

1 ) on the left of the side of the

system to the pressure waves (P+
2 ; P

�

2 ) on the right side of the system:

"
P+
1

P�1

#
=

"
E F

G H

# "
P+
2

P�2

#
; (D.2)

where E; F;G;H are complex-valued, and frequency-dependent.

D.1.3 Scattering Matrix

The general scattering matrix relates the out-going waves (P+
2 ; P

�

1 ) to the in-coming waves

(P+
1 ; P

�

2 ): "
P+
2

P�1

#
=

"
T+ R+

R� T�

# "
P+
1

P�2

#
; (D.3)

where T+; T� are the transmittances in positive and negative x-direction, respectively,

and R+; R� are the re
ectances back into positive and negative x-direction, respectively.

As in the case of ABCD- and EFGH-matrices, the elements of the scattering matrix are

complex-valued, and a function of frequency.

D.2 Matrix Transformations

The di�erent matrix types described above all hold exactly the same acoustical informa-

tion. In many cases, it is desirable to be able to compute one type of matrix from another.

In other words, we need to be able to transform between the di�erent matrix types. These

linear transformations can be worked out using the de�nition of the plane input- and



D.2. MATRIX TRANSFORMATIONS 261

output-waves on both sides of the system:

P1 = P+
1 + P�1 ; (D.4a)

P2 = P+
2 + P�2 ; (D.4b)

Z1U1 = P+
1 � P�1 ; (D.4c)

Z2U2 = P+
2 � P�2 : (D.4d)

D.2.1 Transmission-Line Matrix $ Waveguide Matrix

Given a transmission-line matrix with elements A;B;C;D, the corresponding waveguide

matrix elements are found by substituting (D.4) into (D.1), and solving for P+
1 ; P

�

1 :

E =
1

2

�
A +

1

Z2
B + Z1C +

Z1
Z2
D

�
;

F =
1

2

�
A� 1

Z2
B + Z1C � Z1

Z2
D

�
; (D.5)

G =
1

2

�
A+

1

Z2
B � Z1C � Z1

Z2
D

�
;

H =
1

2

�
A� 1

Z2
B � Z1C +

Z1
Z2
D

�
: (D.6)

The inverse transformation can be found by combining (D.4) and (D.2), and solving for

P1; U1:

A =
1

2
(E + F +G+H) ;

B =
1

2
Z2 (E � F + G�H) ; (D.7)

C =
1

2

1

Z1
(E + F � G�H) ;

D =
1

2

Z2
Z1

(E � F � G+H) : (D.8)
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D.2.2 Waveguide Matrix $ Scattering Matrix

Given a waveguide matrix with elements E; F;G;H, the corresponding scattering matrix

elements are found by simply solving (D.2) for P+
2 ; P

�

1 :

T+ =
1

E
;

R+ = �F
E
; (D.9)

R� =
G

E
;

T� = H � FG

E
: (D.10)

Vice versa, given a scattering matrix with elements T+; R+; R�; T+, the corresponding

waveguide matrix elements are found by solving (D.3) for P+
1 ; P

�

1 :

E =
1

T+
;

F = �R
+

T+
; (D.11)

G =
R�

T+
;

H = T� � R+R�

T+
: (D.12)



Appendix E

Three-Port Scattering Equations

E.1 General Three-Port Scattering Junction

Figure E.1a depicts a junction of three acoustic channels, and �gure E.1b shows the wave

digital modelling scheme for this junction. In the frequency-domain, each pair of wave

variables (P+
x ; P

�
x ) is related to the acoustical variables (Px; Ux) as:

Px = P+
x + P�x ; (E.1a)

RxUx = P+
x � P�x : (E.1b)

for x = a; b; c, where (Ra; Rb; Rc) are the port-resistances. In the wave digital modelling

approach, the port-resistance Rx is set equal to the characteristic impedance Zx if the

acoustic channel x communicates to a distributed system.

According to Kircho�'s laws, the pressure at the junction must be continuous and the

cucp

bu
bp

a)
b)

+
cp −

cp

+
bp

−
bp+

ap
−
ap

3-port
scattering
junction

apau

Figure E.1: A junction of three acoustical channels (a), and its three-port wave digital modelling
scheme (b). The direction of the 
ow Uk of each channel k = a; b; c is chosen positive here for a

ow going into the junction, and negative for a 
ow going out of the junction.
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total net 
ow into the junction must be zero:

Pa = Pb = Pc; (E.2a)

Ua + Ub + Uc = 0: (E.2b)

If we substitute (E.1), the following set of scattering equations are found:

P�a = ka P
+
a + (1 + kb)P

+
b + (1 + kc)P

+
c ; (E.3a)

P�b = (1 + ka)P
+
a + kb P

+
b + (1 + kc)P

+
c ; (E.3b)

P�c = (1 + ka)P
+
a + (1 + kb)P

+
b + kc P

+
c ; (E.3c)

where the junction re
ection coeÆcients are:

ka =
Ga � Gb �Gc

Ga + Gb +Gc
; (E.4a)

kb =
Gb �Ga �Gc

Ga + Gb +Gc
; (E.4b)

kc =
Gc �Ga �Gb

Ga + Gb +Gc
; (E.4c)

and Gx = 1=Rx is the port-admittance of channel x.

E.2 Branching Junction

In wind instrument modelling, the speci�c junction in �gure E.2a is often encountered, in

which an acoustical channel (1) splits up into two branching (channel 2 and 3). In this case,

it is convenient to choose the direction of the 
ow as in �gure E.2a. This means that, in

comparison with the general three-port junction (�gure E.1), the 
ows for channels 2 and

3 are de�ned as positive in opposite directions. The corresponding three-port scattering

junction is depicted in �gure E.2b. The frequency-domain scattering equations for this

system are found by substituting:

P+
a = P+

1 ; P�a = P�1 ; G1 = Ga;

P+
b = P�2 ; P�b = P+

2 ; G2 = Gb;

P+
c = P�3 ; P�c = P+

3 ; G3 = Gc:
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3u3p

2u

2p

a)
b) +

3p−
3p

+
2p

−
2p

+
1p

−
1p

3-port
scattering
junction

1p

1u

Figure E.2: An acoustical branching junction (a), and its three-port wave digital modelling scheme
(b). The direction of 
ow u1 are chosen positive here when going into the junction, and negative
when going out of the junction. The direction of the 
ows u2 and and u3 are chosen the other way
around, thus positive when going out of the junction, and negative when going into the junction.
This is done for convenience in the context of wave digital modelling of wind instruments.

into (E.3), which yields:

P�1 = k1 P
+
1 + (1 + k2)P

�

2 + (1 + k3)P
�

3 ; (E.5a)

P+
2 = (1 + k1)P

+
1 + k2 P

�

2 + (1 + k3)P
�

3 ; (E.5b)

P+
3 = (1 + k1)P

+
1 + (1 + k2)P

�

2 + k3 P
�

3 ; (E.5c)

where the junction scattering coeÆcients are de�ned in the same way as in (E.4):

k1 =
G1 �G2 �G3

G1 +G2 +G3
; (E.6a)

k2 =
G2 �G1 �G3

G1 +G2 +G3
; (E.6b)

k3 =
G3 �G1 �G2

G1 +G2 +G3
: (E.6c)

Often it is convenient to write k3 in terms of k1 and k2:

k3 = �(1 + k1 + k2); (E.7)

so that the scattering can be computed using only two multiplications:

P�1 = P�2 +W; (E.8a)

P+
2 = P+

1 +W; (E.8b)

P+
3 = P+

1 + P�2 + P�3 +W; (E.8c)
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with

W = k1
�
P+
1 � P�3

�
+ k2

�
P�2 � P�3

�
: (E.9)



Appendix F

Discretisation of the Driven

Harmonic Oscillator

Harmonic oscillation can be described as the motion of a mass that is connected to a �xed

point, through a spring with damping, and driven by an external force (see �gure F.1).

In this model, the spring is assumed be massless and linear (with sti�ness K), and the

damping of the spring is entirely represented by a separate element R (resistance). Thus

the equation of motion of the mass M is:

M
d2x

dt2
+ R

dx

dt
+Kx = fd; (F.1)

where fd is the driving force and x is the de
ection of the mass from its equilibrium

position. This is a second-order system, which can be simulated in the discrete-time

domain using the di�erence equation:

x(n) = b0f(n) + b1f(n� 1) + b2f(n� 2)� a1x(n� 1)� a2x(n� 2): (F.2)

K

M

R

df

Figure F.1: A harmonic oscillator in the form of a mechanical mass-spring-damper system.
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This di�erence equation corresponds to the second-order digital �lter transfer function

H(z) =
b0 + b1z

�1 + b2z
�2

1 + a1z�1 + a2z�2
: (F.3)

There are several methods for obtaining the �lter coeÆcients (b0; b1; b2; a1; a2) available in

the literature, each of which has its own discretisation e�ects. Here we will discuss and

compare three di�erent methods of discretisation.

F.1 Analytic Solutions to the Equation of Motion

F.1.1 General Time-Domain Solution

The general solution of (F.1) can be found by �rst solving the equation for fd = 0:

@2x

@t2
+

�
R

M

�
@x

@t
+

�
K

M

�
x =

fd
M

= 0: (F.4)

The characteristic equation of (F.4) is:

�2 +
R

M
�+

K

M
= 0: (F.5)

with the roots

� =
� R

M �
q�

R
M

�2 � 4K
M

2
: (F.6)

In the case where the damping is suÆciently small in relation to the mass and sti�ness

�
R

2M

�2

<
K

M
; (F.7)

the roots are complex-valued:

� = �� � j!r; (F.8)

where we introduced some new variables:

!r =
q
!20 � �2 (angular resonance frequency); (F.9a)

� =
R

2M
(damping factor); (F.9b)

!0 =

r
K

M
(angular resonance frequency for R = 0): (F.9c)
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We can express the complete mathematical solution of (F.4) as:

x(t) = C1e
(��+j!r)t + C2e

(���j!r)t; (F.10)

where C1 and C2 are complex-valued. If we substitute:

C1 = A1 + jB1; (F.11a)

C2 = A2 + jB2; (F.11b)

into (F.10), then the complete solution can be written:

x(t) = e��t [(A1 +A2)cos(!rt)� (B1 � B2)sin(!rt)]

+ je��t [(A1 � A2)sin(!rt)� (B1 +B2)cos(!rt)] : (F.12)

Only the real part of this solution has a physical meaning. We can re-formulate (F.10)

such that it represents only all possible real-valued solutions, by setting:

A1 = A2; (F.13a)

B1 = �B2: (F.13b)

It can be shown that the real-valued solution is always a sinusoidal wave, since we can

write the real part of (F.10) as:

x(t) = C e��tcos(!rt� �); (F.14)

where

C =

q
(A1 + A2)

2 + (B2 � B1)
2; (F.15a)

� = tan�1
�
B2 � B1

A1 + A2

�
: (F.15b)

The full solution of (F.1) is the sum of the solution of the reduced equation and the speci�c

solution that depends on the driving force. For a driving force with angular frequency !d

and amplitude Ad, it can be found that the speci�c solution is:

x(t) = D cos(!t�  ); (F.16)
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with

D =
Adp

M2(!20 � !2)2 +R2!2
; (F.17a)

 = tan�1
�

R!

M(!20 � !2)

�
: (F.17b)

Hence the full solution of (F.1) for a driving force fd(t) = Ad cos(!t) is:

x(t) = C e��tcos(!rt� �) +Dcos(!t �  ): (F.18)

F.1.2 Mechanical Impedance

The Laplace transform of (F.1) is:

X(s) � �s2 + 2�s+ !20
�
=
F (s)

M
: (F.19)

Multiplication with s corresponds to di�erentiation in the time-domain, thus V (s) =

s � X(s) represents the velocity of the mass M . Hence we can compute the mechanical

impedance (the ratio between the force and the velocity):

Z(!) =
F (s)

V (s)
=
M

s

�
s2 + 2�s+ !20

�
= R+ j

�
M! � K

!

�
: (F.20)

F.1.3 Filter Interpretation

We can also interpret the harmonic oscillator as an analogue �lter with the driving force

fd as the input signal. The transfer function of this �lter expresses the ratio between input

and output:

H(s) =
X(s)

F (s)
=

1

s �Z(s) =
M�1

s2 + 2�s + !20
: (F.21)

We can compute the continuous-time impulse response of the �lter by using the inverse

Laplace transform:

h(t) = L�1:
�

M�1

s2 + 2�s + !20

�
=

�
e��t

M!r

�
sin(!rt): (F.22)
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F.2 Discretisation

F.2.1 The Impulse-Invariance Method

The impulse invariance method (IIM) is based on sampling the �lter impulse response.

First we write the real-valued continuous-time impulse response in the form of (F.10):

h(t) =

�
e��t

M!r

�
sin(!rt); (F.23a)

=
�je��t
2M!r

[cos(!rt) + jsin(!rt) � cos(�!rt) � jsin(�!rt)] ; (F.23b)

= C1e
(��+j!r)t + C2e

(���j!r)t; (F.23c)

with

C1 = �C2 = � j

2M!r
: (F.24)

Now we sample the response by setting t = nT , where fs = 1=T is the sample rate:

h(n) = C1e
(��+j!r)nT + C2e

(���j!r)nT : (F.25)

The digital transfer function is obtained through the Z-transform of (F.25):

H(z) =
1X
n=0

h
C1e

(��+j!r)nT + C2e
(���j!r)nT

i
z�n; (F.26a)

= C1

1X
n=0

�
e(��+j!r)Tz�1

�n
+ C2

1X
n=0

�
e(���j!r)Tz�1

�n
: (F.26b)

The inner sums in (F.26) convert to a �nite value because for jaj < 1:

1X
n=0

a�n =
1

1� a: (F.27)

So now we can write the response as a parallel combination of two �rst-order �lters:

H(z) =
C1

1�
h
e(��+j!r)T

i
z�1

+
C2

1�
h
e(���j!r)T

i
z�1

: (F.28)

If we substitute the values for C1 and C2 (equation (F.24)), and put the complete expres-

sion under one denominator, the digital transfer function becomes:

H(z) =

��
e��T

M!r

�
sin(!rT )

�
z�1

1� [2e��T cos(!rT )]z�1 + [e�2�T ] z�2
: (F.29)
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Since we used the Laplace transform to derive the continuous-time impulse response, and

then applied the Z-transform to obtain the digital frequency-response, a scaling error has

been introduced in the process of discretisation. In order to make sure that we have the

proper scaling, it must be taken into account that the Z-transform H(z) of the discrete-

time signal h(n) = ha(nT ) is related to the Laplace transform (Ha(s)) by [109]:

H(z) =
1

T

1X
k=�1

Ha

�
s� j 2�k

T

�
: (F.30)

Thus in order to have a digital �lter that approximates the analogue �lter frequency

response in the range 0 < f < fs, the digital �lter response must be multiplied by T .

Hence the �nal �lter transfer function, that describes the harmonic oscillator, is

H(z) =

��
Te��T

M!r

�
sin(!rT )

�
z�1

1� [2e��Tcos(!rT )] z�1 + [e�2�T ] z�2
: (F.31)

F.2.2 Finite Di�erences

Another method of discretisation is to approximate the derivatives in (F.1) with �nite

di�erences. For example we can use the following �nite di�erence scheme:

dx

dt
� x(n)� x(n� 1)

T
;

(F.32)

d2x

dt2
� x(n+ 1)� 2x(n) + x(n� 1)

T 2
;

in which the velocity is approximated using the backward-di�erence formula, and the

acceleration is approximated using the centered-di�erence formula. Applying this scheme

to (F.1) yields the di�erence equation:

x(n+ 1) =
�
2� 2�T � !20T 2

�
x(n) + [2�T � 1]x(n� 1) +

�
T 2

M

�
f(n): (F.33)

The corresponding �lter transfer function is:

H(z) =

�
T 2

M

�
z�1

1 +
�
!20T

2 + 2�T � 2
�
z�1 + [1� 2�T ] z�2

: (F.34)
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F.2.3 The Bilinear Transform

The bilinear transform (BT) maps the continuous-frequency variable s to the discrete-

frequency variable z:

s = �

�
1� z�1
1 + z�1

�
; (F.35)

where � = 2=T is the bilinear operator. Applying the BT to the transfer function of the

harmonic oscillator (equation (F.21)) gives:

H(z) =

�
M�1

�2 + 2�� + !20

� �
1 + 2z�1 + z�2

�
1 +

�
2(!20 � �2)

�2 + 2�� + !20

�
z�1 +

�
�2 � 2�� + !20
�2 + 2�� + !20

�
z�2

: (F.36)

Impulse Invariance Method Finite Di�erences Bilinear Transform

b0 0 0 M�1

�2 + 2�� + !20

b1

�
Te��T

M!r

�
sin(!rT )

T 2

M
2M�1

�2 + 2�� + !20

b2 0 0 M�1

�2 + 2�� + !20

a1 �2e��T cos(!rT ) !20T
2 + 2�T � 2

2(!20 � �2)
�2 + 2�� + !20

a2 e�2�T 1� 2�T
�2 � 2�� + !20
�2 + 2�� + !20

Table F.1: CoeÆcients of the digital �lter approximation of the driven harmonic oscillator. � =

2=T is the bilinear operator.
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F.2.4 Comparison

The e�ect of discretisation of each of the three methods can be seen by comparing the

digital �lter response with the analogue �lter response. This was done for a series of

di�erent �lters, in which the sti�ness was varied such that the resonance frequency !0

takes on the values ! = i
p
K0=M , for i = 1; 2; 3, whereK0 = 10000N/m,M = 2�10�5kg,

and R = 0:07kg/s. Figure F.2 compares the responses. Apparently, the impulse invariance

method (IIM) is accurate at and around the location of the resonance frequency. This

makes sense, since the IIM can be thought of as a method in which the poles of the

analogue �lters (the positions of which are related to the resonance frequency) are directly

mapped from the s-plane to the z-plane [109]. The �t of the IIM response gets worse as we

move away from the resonance frequency, which is due to the e�ect of aliasing [109]. Both

the other methods are not as accurate around the resonance frequency, but instead have

an exact �t at ! = 0. For both the method of �nite di�erences (FDM) and the bilinear

transform (BT), the discrepancy between the \ideal" analogue response and the digital

response gets larger with frequency. The resonance frequency and the amplitude tend to

be over-estimated by the FDM and under-estimated by the BT.
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Figure F.2: Magnitude response of the harmonic oscillator, computed for three di�erent resonance
frequencies. The solid lines indicates the analogue �lter responses, and the dashed lines indicate
the digital �lter responses.



276 APPENDIX F. DISCRETISATION OF THE HARMONIC OSCILLATOR



Appendix G

Discretisation of a One-Pole Filter

Element

Consider the analogue one-pole system

H(s) = g

�
�

s+ �

�
: (G.1)

This is a lowpass �lter with a pole at s = �� and gain g. We can approximate H(s) in

discrete-time with the digital one-pole �lter:

H(z) =
b0 + b1z

�1

1 + a1z�1
: (G.2)

There are several methods for obtaining the �lter coeÆcients (b0; b1; a1). In this appendix

we will discuss and compare three of such methods. Because we intend to apply these

methods to modelling wave scattering at conical junctions, the �lter is not a priori assumed

to be stable (i.e., � can become negative).

G.1 The Impulse Invariance Method

As seen in appendix F, the impulse invariance method (IIM) is based on sampling the

continuous-time output of the �lter. For a one-pole system with a pole at s = ��, this
results in a digital �lter that has a pole at z = e��T [109], thus we have:

a1 = �e��T : (G.3)

277
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The gain of the digital �lter is usually taken equal to T times the gain of the analogue

�lter, which is realised by with

b0 = gT; (G.4)

while the second zero-coeÆcient b1 is set to zero. However, in digital waveguide and wave

digital modelling applications, the magnitude response at ! = 0 needs to be preserved.

This can be achieved by setting:

b0 = g
�
1� ebT

�
: (G.5)

G.2 The Bilinear Transform

In appendix F, we have seen that the bilinear transform (BT) is carried out via an s to

z mapping (equation (3.40)). Applying the BT to the �lter H(s) gives the following �lter

coeÆcients:

b0 = b1 =
g �

�+ �
; (G.6a)

a1 =
�� �

�+ �
; (G.6b)

where � = 2=T is the bilinear operator.

G.3 The Time-Interpolated Convolution Method

The general concept of time-interpolated convolution is brie
y explained in section 6.3.1.

To apply this method to the problem of discretising a �rst-order �lter element, we need

to �rst formulate the impulse response of the �lter. The impulse response h(t) can be

obtained via an inverse Laplace transform of equation (G.1). Depending on how we de�ne

the region of convergence (ROC) of the system [109], one may obtain either a non-causal

or a causal response. For � > 0, the causal response is stable and the non-causal response

is unstable, whereas for � < 0, the non-causal response is stable and the causal response

is unstable. In the current context, h(t) represents a physical response, therefore the ROC

is always chosen here such that a causal response results. Thus for t � 0, we have:

h(t) = g e�� t: (G.7)
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Given an input-signal x(t), the output-signal y(t) can then be computed by means of a

recursive formulation of the convolution product y(t) = h(t) � x(t) [94]:

y(t+ T ) = e��Tx(t) +

TZ
�=0

h(�) x(t+ T � �) d�: (G.8)

Within this formulation, a linear evolution of the input-signal between the discrete-time

instants � = t and � = t+ T is assumed:

x(t + T � �) = c1 � � + c2; (G.9)

where

c1 =
x(t + T )� x(t)

T
; (G.10a)

c2 = x(t): (G.10b)

We can analytically determine the convolution product in (G.8):

TZ
�=0

h(�) x(t+ T � �) d� =

TZ
�=0

g e��� (c1 � + c2) d�

= g

�
c1

�
Te��T +

e��T � 1

�

�
+ c2

�
e��T � 1

��
:(G.11)

After substituting (G.10) into (G.11), and combining with (G.8), we obtain the di�erence

equation

y(t+ T ) = b0 x(t + T ) + b1 x(t)� a1 y(t); (G.12)

with the coeÆcients:

b0 = �g
�
1 +

e��T � 1

�T

�
; (G.13a)

b1 = g

�
e��T +

e��T � 1

�T

�
; (G.13b)

a1 = e��T : (G.13c)

Equation (G.12) implements the �rst-order digital �lter in (G.2). Thus, if a linear evolu-

tion of the incident wave between discrete-time instants is assumed, the time-interpolated

convolution method (TICM) may be interpreted as an alternative way of �lter discretisa-

tion.
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G.4 Filter Comparison

In order to compare the di�erent methods for obtaining the coeÆcients, we computed the

�lter response for a range of �-values, and using a unity gain (g = 1). In �gure G.1, the

digital responses are compared to the analogue responses. Apparently, all three methods

are exact at ! = 0. For all other frequencies, the IIM overestimates and the TICM as well

as the BT underestimate the magnitude response. Furthermore, it can be seen that the

responses obtained using the TICM and using the BT are remarkably similar.
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Figure G.1: Magnitude response of the one-pole �lter element, computed for � = 1000, � = 3000,
and � = 9000, and with g = 1. The solid lines indicates the analogue �lter responses, and the
dashed lines indicate the digital �lter responses.
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Appendix H

Finite Di�erence Approximations

of the Bar Equation

The bar equation (10.11) can be written:

F (xi; tn)

Y
=

�A(x)

Y

�
@2y

@t2
(xi; tn) + 
B

@y

@t
(xi; tn)

�
+

@2

@x2

�
I(x)

@2y

@x2
(xi; tn)

�
� � �

+
@2

@x2

�
� I(x)

Æ3y

Æx2Æt
(xi; tn)

�
: (H.1)

The �rst- and second-order partial derivative with respect to time in (H.1) are approxi-

mated using the central di�erence schemes:

Æy=Æt(xi; tn) � yn+1i � yn�1i

2T
;

Æ2y=Æt2(xi; tn) � yn+1i � 2yni + yn�1i

T 2
: (H.2)

(H.3)

Following the approach used in [36], the fourth-order spatial derivative (the second term

on the right-hand side of (H.1))is approximated using a �-scheme:

@2

@x2

�
I(x)

@2y

@x2
(xi; tn)

�
� �

�
Æ2x[Ii(Æ

2
xy)i]

n+1 + Æ2x[Ii(Æ
2
xy)i]

n�1
�
+(1� 2�) Æ2x[Ii(Æ

2
xy)i]

n;

(H.4)

where Æ2x[Ii(Æ
2
xy)i]

n is given by (10.13). The derivative Æ3y=Æx2Æt in (H.1) is approximated

with
(Æ2xy)

n+1
i � (Æ2xy)

n+1
i

2T
; (H.5)
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where we do not yet explicitly evaluate the second-order spatial derivative terms. Substi-

tuting (H.5) into the third term on the righthand-side of (H.1), and again applying the

�-scheme to approximate the resulting fourth-order terms yields:

@2

@x2

�
� I(x)

Æy3

Æx2Æt
(xi; tn)

�
� ��

�
Æ2x[Ii(Æ

2
xy)i]

n+1 � Æ2x[Ii(Æ2xy)i]n�1
�
: (H.6)

Substituting equations (H.2), (H.4), and (H.6) into (H.1) yields the numerical formulation

of the system presented in (10.14). If we set � = Y T 2 (�x)�4, the bar di�erence equation

can be written:

T 2Fn
i = � � (1 + �) Ii�1 y

n+1
i�2 ;

�2� � (1 + �)(Ii + Ii�1) y
n+1
i�1 ;

+ [� � (1 + �)(Ii+1 + 4Ii + Ii�1) + �Ai (
 + 1)] yn+1i ;

�2� � (1 + �)(Ii+1 + Ii) y
n+1
i+1 ;

+� � (1 + �) Ii+1 y
n+1
i+2 ;

+� (1� 2�) Ii�1 y
n
i�2;

�2� (1� 2�) (Ii + Ii�1) y
n
i�1;

+ [� (1� 2�)(Ii+1 + 4Ii + Ii�1)� 2�Ai] y
n
i ;

�2� (1� 2�)(Ii+1 + Ii) y
n
i+1;

+� (1� 2�)Ii+1 y
n
i�2;

+� � (1� �) Ii�1 yn�1i�2 ;

�2� � (1� �) (Ii + Ii�1) y
n�1
i�1 ;

+ [� �(1� �) (Ii+1 + 4Ii + Ii�1) + �Ai (
 � 1)] yn�1i ;

�2� � (1� �)(Ii+1 + Ii) y
n�1
i+1 ;

+� � (1� �) Ii+1 yn�1i+2 :

The boundary conditions in (10.10) are expressed in discrete-time form as:

yn0 = 0; (H.7a)

yn�1 = yn1 ; (H.7b)

ynN+1 = 2ynN � ynN�1; (H.7c)

ynN+2 = 4ynN � 4ynN�1 + ynN�2: (H.7d)
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The above di�erence equation and boundary equations form a set of (N+4) simultaneous

equations that can be expressed in matrix form:

Mn+1 � y(n+ 1) =Mn � y(n) +Mn�1 � y(n� 1) +MF � F(n); (H.8)

where y(n), y(n�1) and y(n�2) are the displacement vectors at successive time instants,

F(n) is the force per unit length vector, and Mn is a (N + 4) by (N + 4) matrix. Solving

for y(n+ 1) gives the �nal matricial formulation in equation (10.15).
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Appendix I

Re
ection Functions of the

Exponential Type

In this appendix we discuss localised bore discontinuities that may be characterised by

re
ection and transmission functions of the exponential type:

r(t) = a0Æ(t) + a1 e
b1t + a2 e

b2t: (I.1)

For this type of discontinuity, the pressure and 
ow are continuous across the discontinuity,

in which case the transmission and re
ection functions are related through the Dirac

distribution Æ(t) [19]. Hence it is suÆcient to limit ourselves to the analysis of the re
ection

functions. In the multi convolution approach, these functions are calculated explicitly,

and convolutions of pressure waves with these functions are realised by means of the

time-interpolated convolution method. In the wave digital approach, the re
ection and

transmission functions are not calculated explicitly. Instead, discontinuities associated

with bore units such as toneholes are discretised individually. In order to be able to

compare the underlying continuous-time models of the two approaches, we derive the

re
ection functions that are e�ectively implemented with the wave digital approach by

means of network theory.

I.1 Diameter and Taper Discontinuities

In the wave digital approach, a junction of two conical sections is modelled with a WD

junction model (see section 6.1). This model is based on a simple parallel inertance

network (see �gure 6.1), in which the junction is characterised by the inertance Lj . For

calculating the e�ective spherical wave re
ectance of the junction as seen from the input-

end of the bore, we must assume an anechoic termination directly after the junction. This
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1L 2LhL

Figure I.1: Equivalent network of an open tonehole discontinuity in a woodwind bore. Lh =
(�te)=(Sb) is the open hole inertance, L1 = (�r1)=S is the conicity inertance on the input-end, and
L2 = (�r2)=S is the conicity inertance on the output-end, where r1 and r2 indicate the cone apex
distances.

re
ectance can thus be calculated from the net impedance of an inertance Lj in parallel

with the characteristic impedance Z2 = (�c)=S2 at the output-end:

R(!) =
Z(!)� Z1
Z(!) + Z1

; (I.2)

where
1

Z(!)
=

1

Lj
+

1

Z2
; (I.3)

and Z1 = (�c)=S1 is the characteristic impedance a the input-end. Through substitution

of equation (6.1), we �nd equation (4.31b). The re
ection function, that is obtained by

taking the inverse Fourier transform of (4.31) is:

r(t) =
B � 1

B + 1
Æ(t)�

�
2B

B + 1

�
�(t)�e�� t; (I.4)

which is equivalent to the re
ection function given by Mart��nez and Agull�o in [93].

I.2 Open Hole

In the wave digital approach, an open hole discontinuity is modelled as a parallel network

of inertances (see �gure I.1), in which each individual inertance is discretised using the

BT. For an anechoical termination at the output-end, the re
ectance as seen from the

input-end is1:

R(!) =
�(�t + �h)

j! + (�t + �h)
; (I.5)

1It is assumed that there is no diameter discontinuity at the hole location.
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with

�h =
c Sb
2Sa te

; (I.6a)

�t =
c

2

�
1

r2
� 1

r1

�
; (I.6b)

where Sa and Sb are the cross-sections of the main bore and the hole, respectievly, and te

is the e�ective tonehole length. The open-hole re
ection function is:

r(t) = �(�t + �h) e
�(�t+�h)t �(t): (I.7)

which is equivalent to the re
ection function given by Barjau et al. in [19].

I.3 Closed Hole

For a closed hole, we may replace the inertance Lh in �gure I.1 with the compliance

Ch = (Sb t)=(�c
2), where t is the tonehole height. The re
ectance as seen from the input-

end, assuming an anechoic termination at the output-end, then becomes:

R(!) = �1 + 1

�

�
��

j! + ��
� �+

j! + �+

�
: (I.8)

with

�+ =
�c
2
(1��) ; (I.9a)

�� =
�c
2
(1 + �) ; (I.9b)

and where

� =
p
1� 4�t=�c; (I.10)

with the closed-hole attenuation coeÆcient

�c =
2Sa c

Sb t
(c)
e

; (I.11)

where t(c)e is the closed-hole e�ective length. The closed-hole re
ection function is

r(t) = �Æ(t) + 1

�
f�� e��� t � �� e��

+ tg: (I.12)

This is the same result as given by Barjau et al. in [19].
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I.4 Closed End

For a closed end, we have a conicity inertance in parallel with an in�nite radiation load,

hence the closed-end re
ectance is:

R(!) =
j!L� Z0
j!L+ Z0

=
c=r � j!
c=r + j!

; (I.13)

where Z0 is the characteristic impedance, L = �(�r)=Sa is the conicity inertance, and r

is the apex distance at the closed end. The re
ection function is:

r(t) = Æ(t)� �(t) (2c=r) e�c t=r; (I.14)

which is equivalent to the closed-end re
ection function given by Mart��nez and Agull�o in

[93].



Appendix J

Acoustic Measurements

The techniques used in in this work for measuring the acoustic response of a tubular object

are described in detail in [126]. This appendix gives a brief description of these techniques.

J.1 Input Impedance Measurements

The input impedance is measured for a �nite set of frequencies by exciting the air column

of an instrument with a sine wave while recording the pressure at the entry with a micro-

phone. The procedure is controlled with a digital computer. Figure J.1 shows a schematic

diagram of the the experimental apparatus.

The computer is used to select a frequency, and a sine wave of this frequency is gener-

ated electrically with a sine generator. The exact frequency of this signal is measured with

an inbuilt frequency meter and sent back to the computer in binary coded form. The sine

wave signal is ampli�ed and send to a loud speaker, which results in a sinusoidal pressure

variation in the cavity. A feedback loop is employed in order to ensure that there is a

constant pressure amplitude in the cavity. The amplitude of the volume 
ow into the in-

strument may then also be assumed to be constant, because the resistance of the capillary

is independent of frequency and much higher than the impedance of the instrument air

column. As a result, the pressure measured at the instrument entry by the microphone

is directly proportional to the input impedance of the instrument. This pressure signal

is �rst passed through a highpass �lter in order to remove low-frequency noise, and then

ampli�ed and sampled by means of an A/D converter. If the volume velocity U amplitude

is known, the input impedance amplitude can be computed from a measured pressure

amplitude P as Zin = P=U . In order to obtain the volume velocity for each frequency,

the procedure is �rst carried out with a tubular object of known impedance Zcal(!). The

calibration volume velocity curve is then Ucal(!) = Pcal(!)=Zcal(!).

291



292 APPENDIX J. ACOUSTIC MEASUREMENTS

power
amplifier

compressor
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computer
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amplifier

highpass
filter

ANECHOIC CHAMBER
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A/D

measuring
amplifier

instrument

loud
speaker cavity

microphone

Figure J.1: Schematic diagram of the impedance measurement apparatus (after Sharp [126])).

J.2 Pulse Re
ectometry Measurements

The response of a tubular object may also be measured directly in the time domain. One

such a method is by means of sending a pulse into the object and recording the re
ections.

This procedure is referred to as pulse re
ectometry. Figure J.2 shows a schematic diagram

of the pulse re
ectometer used in this study. A computer-generated pulse is ampli�ed and

used to drive a loudspeaker. As a result, a pressure wave is released into the source tube

and travels into the instrument under test. The signal that re
ects from the instrument is

recorded with a microphone that is embedded in the source tube wall, and the microphone

output signal is sampled with an A/D converter. The computer is programmed to send

a sequence of 1000 pulses, and the resulting re
ection signals are averaged in order to

improve the signal-to-noise ratio. This procedure is �rst carried out with the source tube

blocked o� at the end, and then again but with the instrument �tted at the end. The

re
ection function of the instrument is then obtained by deconvolving the two obtained

re
ection signals.

The lengths l1 and l2 of the source tube have to be chosen large enough to ensure that

the object re
ection signal is separated in time from the initial input pulse as well as from

any further re
ections from the loudspeaker.
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Figure J.2: Schematic diagram of the pulse re
ectometer (after Sharp [126])).
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Appendix K

Sound Examples

This appendix gives a short description of some sound examples. These can be downloaded

from http://www.music.ed.ac.uk/student/pages/pg/maarten/thesissounds.html.

All sound examples are either generated at 44:1kHz, except those marked with �, which

are generated at 176:4kHz and downsampled (after lowpass �ltering) by a factor four.

(ex1) impulse response (Green's function) of the bore depicted in �gure 6.7a, as computed

with the transmission-line model.

(ex2) same as (ex1), but computed with the wave digital model depicted in �gure 6.8.

(ex3) impulse response (Green's function) of the bore depicted in �gure 6.7b, as computed

with the transmission-line model.

(ex4) same as (ex3), but computed with the wave digital model depicted in �gure 6.10.

(ex5) impulse response (Green's function) of the Boosey and Hawkes trumpet, as computed

with the wave digital model depicted in �gure 9.2.

(ex6) radiation pressure signal that results when inserting a volume 
ow input pulse into

the wave digital model of the Boosey and Hawkes trumpet depicted in �gure 9.2.

(ex7�) impulse response (Green's function) of the Selmer clarinet, as computed with the

wave digital model of the Selmer clarinet described in section 9.2.2.

(ex8�) radiation pressure signal that results when inserting a volume 
ow input pulse into

the wave digital model of the Selmer clarinet describeded in section 9.2.2.

(ex9�) mouthpiece pressure signal, as computed with the digital simulation of the reed-

excited pipe system described in section 10.4, using displacement-dependent reed

parameters. The spectogram of this signal is depicted in �gure 10.25.
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(ex10�) same as (ex9), but computed using constant reed parameters. The spectogram of

this signal is depicted in �gure 10.26.

(ex11�) radiation pressure signal, as computed with the digital simulation of the reed-excited

pipe system described in section 10.4, using displacement-dependent reed parame-

ters.

(ex12�) same as (ex11), but computed using constant reed parameters.
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